• Title/Summary/Keyword: Micro Axial-Type Turbine

Search Result 11, Processing Time 0.025 seconds

Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine (부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.324-330
    • /
    • 2005
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

  • PDF

Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine (부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구)

  • Cho Chong-Hyun;Choi Sang-Kyu;Cho Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.13-19
    • /
    • 2006
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

Design of a Propeller Type Rim-Driven Axial-Flow Turbine for a Micro-Hydropower System (마이크로 수력 발전을 위한 프로펠러형 림구동 축류 터빈 설계)

  • Oh, Jin-An;Bang, Deok-Je;Jung, Rho-Taek;Lee, Su-Min;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.183-191
    • /
    • 2022
  • A design method for a propeller type rim-driven axial-flow turbine for a micro-hydropower system is presented. The turbine consists of pre-stator, impeller and post-stator, where the pre-stator plays a role as a guide vane to provide circumferential velocity to the on-coming flow, and the impeller as a rotational power generator by absorbing angular momentum of the flow. BEM(Blade Element Method), which is based on the turbine Euler equation, is employed to design the pre-stator and impeller blades. NACA 66 thickness form and a=0.8 mean camber line, which is widely accepted as a marine propeller blade section, is used for the pre-stator and turbine blade section. A CFD method, derived from the discretization of the RANS equations, is applied for the analysis of the designed turbine system. The design conditions of the turbine is confirmed by the CFD calculation. Turbine characteristic curve is calculated by the CFD method, in order to provide the performance characteristics at off-design operation conditions. The proposed procedures for the design of a propeller type rim-driven axial-flow turbine are established and confirmed by the CFD analysis.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

An Experimental Study of Partial Admitted Flow Characteristics on a Small Axial-Type Turbine (소형축류형 터빈에서의 부분분사 유동특성에 관한 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.28-37
    • /
    • 2004
  • An experimental study is conducted to investigate flow characteristics on a small axial-type turbine which is applied as the rotating part of air tools. It operates in a partial admission due to consumption restriction of the high pressure air. In this operating condition, it is necessary to understand flow characteristics for obtaining the high specific output power. Tested turbine consists of two stages and the mean radius of flow passage is less than 10mm. A 6 bar pressure air is used to operate the turbine. The experimental results show that flow angles depend on the measuring location along the circumferential direction, but its discrepancy is alleviated along the axial direction. Absolute flow velocities show three times difference according to the measuring location at the exit of the first rotor due to the partial admission, but they show similar value at the exit of the second rotor by the velocity diffusion. From the measured flow angles and velocities, a ratio of output power obtained by the first and second rotor is estimated. It shows that the output power obtained by the second rotor is about $11\%$ to that by the first rotor at 60,000 RPM. It is effective therefore to improve the first rotor for increasing the turbine output power.

A Study of the Second Stage Effect on a Partially Admitted Small Turbine (부분분사에서 작동하는 소형터빈에서 두 번째 단의 효과에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Choi, Sang-Kyu;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.898-906
    • /
    • 2008
  • A tested turbine consists of two stages, and an axial-type and a radial-type turbine are applied to the first and second stage, respectively. The mean diameter of the axial-type turbine rotor is 70 mm, and the outer diameter of the radial-type turbine is 68mm at the inlet. In this experiment, an axial-type turbine, two different radial-type turbines, and three different nozzle flow angles are applied to find the optimal design parameters. To compare the turbine performance, the net specific output torque is evaluated. The test results show that the nozzle flow angle on the first stage is a more important parameter than other design parameters for partially admitted small turbines to obtain high operating torque. For a 3.4% partial admission rate, the net specific output torque is increased by 13% with the addition of a radial-type rotor to the second stage when the turbine operates at $75^{\circ}$ nozzle flow angle.

An Experimental Study of the Performance Characteristics on a Multi-Stage Micro Turbine with Various Stages (다단 마이크로터빈에서 단수 변화에 따른 터빈의 성능에 관한 실험적연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.76-82
    • /
    • 2005
  • An experimental study on an axial-type micro turbine which consists of maximum 6 stages is conducted to measure aerodynamic characteristics on each stage. This turbine has a 2.0 flow coefficient, 3.25 loading coefficient and 25.8mm mean diameter. The solidity of stators and rotors is within a 0.67~0.75, and the off-design performance is measured by changing the load after adjusting the mass flowrate and the total pressure to constant at inlet. A maximum specific output power of 2kW/kg/sec is obtained in one stage, but the increment of the specific output power with increasing stages is alleviated. In case of torque, the increment of the torque maintains to constant at low RPM region, but its increment become dull at high RPM region. The efficiency of the micro turbine becomes low because the tip gap effect is great due to the small blade, but it could be improved by increasing the stages.

The Performance Analysis of a Counter-rotating Tubular Type Turbine with the Number of Runner Vane (러너베인 깃수의 변화에 따른 튜블러형 상반전 수차의 성능해석)

  • Park, Jihoon;Lee, Nakjoong;Hwang, Youngho;Kim, Youtaek;Lee, Youngho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.192.1-192.1
    • /
    • 2010
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this paper, detail studies have been carried out to acquire basic design data of micro counter-rotating hydraulic turbine, output power, head, and efficiency characteristics on various number of runner vane. Moreover, the influences of pressure, tangential and axial velocity distributions on turbine performance are also investigated.

  • PDF

Performance Characteristics of a Partially Admitted Small Mixed-Type Turbine (부분분사에서 작동하는 소형 사류형 터빈에서의 성능특성에 관한 연구)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Paeng, Jin-Gi;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.889-898
    • /
    • 2009
  • A mixed-type turbine was adopted and the rotor outer diameter was 108 mm. Turbine rotors were designed to the axial-type blade because the turbine operated at a low partial admission rate of 1.7-2.0% with two stages. Performance characteristics were studied when the spouting from the nozzle was toward radially inward or outward direction. Additionally, the effect at each stage of the rotor was measured. For comparing with each turbine performance, properties were measured based on various rotational speeds. Measured net specific torque was used to compare with the turbine system performance. On the mixed-type turbine, better performance was obtained when the operating air spouted toward radially inward direction. The specific torque was increased by 7.8% from using the second stage although its effect depended on the rotational speed.

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.