• Title/Summary/Keyword: Micro Assembly

Search Result 189, Processing Time 0.023 seconds

Analytical & Experimental Study on Microvibration Effects of Satellite (인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구)

  • Park, Geeyong;Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.533-539
    • /
    • 2013
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis framework, micro vibration emulator and satellite structure testbed.

  • PDF

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

A Nickel Nanowire Diluter Operating through the Principle of the Dielectrophoretic Attraction Force (유전영동을 이용하는 니켈 나노와이어 희석기)

  • Yang, Jin-Ho;Yoon, Hyeun-Joong;Yang, Eui-Hyeok;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.385-389
    • /
    • 2010
  • This paper presents a microfabricated nanowire diluter which dilutes the concentration of nanowires in solution instead of by the conventional centrifuge process. The device has 16 pairs of gold electrodes in a micro channel composed of a glass substrate and PDMS. We prepared nickel nanowires by the template-directed electrodeposition method using nanoporous anodized aluminum template (AAO). We injected the Dimethylformamide (DMF) solution containing nanowires into the inlet of the diluter while applying square wave voltages on the electrodes to trap the nanowires at the subsequent gold electrodes by means of dielectrophoretic attraction forces. The concentration of nanowires at the outlet of the micro channel was changed as we expected, which illustrates that the device can effectively dilute nanowires and can be applied to a controlled assembly of nanowires.

Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage (3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계)

  • Kim, Jung Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

Optically Actuated Carbon Nanocoils

  • Wang, Peng;Pan, Lujun;Li, Chengwei;Zheng, Jia
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850112.1-1850112.6
    • /
    • 2018
  • Optical manipulation on microscale and nanoscale structures opens up new possibilities for assembly and control of microelectromechanical systems and nanoelectromechanical systems. Static optical force induces constant displacement while changing optical force stimulates vibration of a microcantilever/nanocantilever. The vibratory behavior of a single carbon nanocoil cantilever under optical actuation is investigated. A fitting formula to describe the laser-induced vibration characteristics is deduced based on a classical continuum model, by which the resonance frequency of the carbon nanocoil can be determined directly and accurately. This optically actuated vibration method could be widely used in stimulating quasi-1D micro/nanorod-like materials, and has potential applications in micro-/nano-opto-electromechanical systems.

Influence of the Syndiotacticity of Poly(vinyl alcohol) block on the formation of micelles for Poly(vinyl alcohol-b-styrene) (Poly(vinyl alcohol) block의 신디오탁틱이 Poly(vinyl alcohol-b-styrene)의 micelle형성에 미치는 영향)

  • 이광화;조창기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.291-292
    • /
    • 2003
  • Amphiphilic block copolymer는 self-assembly특성을 가지고 있기 때문에 선택된 용매 속에서 nanoscale-domain 즉 micelle을 형성할 수 있다. 이러한 특성은 기타 불용성 물질을 가용화하고 colloidal particle을 안정화시키거나 micro-emulsion을 형성할 수 있어 pharmaceutics, drug delivery system등 영역, 그리고 emulsion stabilizer, thickener, dispersion agent등으로 사용될 수 있다. (중략)

  • PDF

Development of two axis contouring control system based on stepping motor (스텝핑 모우터를 이용한 2축 윤곽제어 장치 개발에 관한 연구)

  • 김교형;이기설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.228-231
    • /
    • 1987
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Contouring error of the system in linear and circular path is within .+-.0.2 mm.

  • PDF

Speed Property Evaluation of an Inchworm Type Linear Stage (인치웜 구조를 갖는 선형 스테이지의 속도 특성연구)

  • Moon, Chan-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.178-182
    • /
    • 2007
  • Precision stages are essential device for micro machines, fiber optic assembly systems, and biology instruments. In this paper, a precision inchworm type actuator for a linear stage is proposed and evaluated. An analytic method to design an inchworm type motor is proposed. Developed actuator provides fast motion compared with a commercial inchworm actuator, and can be used as an actuator for a stage in substitution for a conventional rotary actuator.

  • PDF

A Prototype of Sensor Module to Control the Position of Hull Block for Tack Welding (선체 블록의 판접 위치 획득을 위한 센서 모듈 시제품 개발)

  • Jeon, Jeong-Ik;Lee, Jang-Hyun;Son, Gum-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-92
    • /
    • 2012
  • Alignment of the main plates during the tack welding is essential to block assembly since most of the curved blocks and outfitting parts are assembled on the jigs and fixtures. Tact welding of main plates is the initial process of the curved hull block assembly. Due to the heavy weight of the main plates it is difficult to locate the plate on the accurate position of the jig and fixtures before welding. The conventional masonry process requires much time and manual work in order to achieve the accurate alignment. This labour-intensive process results in relatively high errors and correction works. Due to their larger dimensions and heavier weights, these hull blocks are not ergonomically desirable and, therefore, various mechanical devices such as hydraulic balancers or hydraulic jigs are used for the plate alignment. In this study, the position-sensing scheme implemented by sensors is presented in order to align the main plates on the accurate position during the hull block assembly. Integrating the Infrared photo sensors and micro processor unit, a small scaled prototype of the position-sensing module is developed to determine the alignment of main plates.

Characterization of electron beam (EB) welds for SUS310S

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.360-360
    • /
    • 2011
  • In this work, SUS310S used for valve plate assembly was electron beam (EB) welded to determine the influence of the parametric conditions on the characteristics of the weld and to minimize porosity and micro-fissures among others. The evolution in the weld geometry and microstructure was examined as a function of the process conditions such as beam current and focusing current under a constant welding speed and accelerating voltage. The integrity of the EB welds in SUS310S was examined for defects (e.g. cracking, porosity, etc.), adequate penetration depth, and tolerable weld width deviation for the various welding conditions. Optical microscopy (OM), x-ray photoelectron spectroscopy analysis (XPS), scanning electron microscopy (SEM) and 3D micro-computed tomography (Micro-CT) for the cross section analysis of the electron beam welded SUS310S were utilized. The tensile strength and hardness were analyzed for the mechanical properties of the EB weld. At the 6 kV accelerating voltage, it was determined that a satisfactory penetration depth and desirable weld width deviation requires a beam current of 30 mA and a focusing current of 0.687 A at the welding speed of 25 mm/sec.

  • PDF