• Title/Summary/Keyword: Micro:bit

Search Result 211, Processing Time 0.028 seconds

Etching Anisotropy Depending on the SiO2 and Process Conditions of NF3 / H2O Remote Plasma Dry Cleaning (NF3 / H2O 원거리 플라즈마 건식 세정 조건 및 SiO2 종류에 따른 식각 이방 특성)

  • Hoon-Jung Oh;Seran Park;Kyu-Dong Kim;Dae-Hong Ko
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.26-31
    • /
    • 2023
  • We investigated the impact of NF3 / H2O remote plasma dry cleaning conditions on the SiO2 etching rate at different preparation states during the fabrication of ultra-large-scale integration (ULSI) devices. This included consideration of factors like Si crystal orientation prior to oxidation and three-dimensional structures. The dry cleaning process were carried out varying the parameters of pressure, NF3 flow rate, and H2O flow rate. We found that the pressure had an effective role in controlling anisotropic etching when a thin SiO2 layer was situated between Si3N4 and Si layers in a multilayer trench structure. Based on these observations, we would like to provide further guidelines for implementing the dry cleaning process in the fabrication of semiconductor devices having 3D structures.

  • PDF

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction (T헝 마이크로채널 연결부 압력구동 유동의 PIV계측)

  • Choi Jayho;Lee In-Seop
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

Applications of Micro Genetic Algorithms to Engineering Design Optimization (마이크로 유전알고리듬의 최적설계 응용에 관한 연구)

  • Kim, Jong-Hun;Lee, Jong-Soo;Lee, Hyung-Joo;Koo, Bon-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.158-166
    • /
    • 2003
  • The paper describes the development and application of advanced evolutionary computing techniques referred to as micro genetic algorithms ($\mu$GA) in the context of engineering design optimization. The basic concept behind $\mu$GA draws from the use of small size of population irrespective of the bit string length in the representation of design variable. Such strategies also demonstrate the faster convergence capability and more savings in computational resource requirements than simple genetic algorithms (SGA). The paper first explores ten-bar truss design problems to see the optimization performance between $\mu$GA and SGA. Subsequently, $\mu$GA is applied to a realistic engineering design problem in the injection molding process optimization.

Three-dimensional Flow Structure inside a Plastic Microfluidic Element (미소유체요소 내부유동의 3차원 측정 및 수치해석)

  • Lee Inwon;An Kwang Hyup;Nam Young Sok;Lee In-seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • A three-dimensional inlet flow structure inside a microfluidic element has been investigated using a micro-PIV(particle image velocimetry) measurement as well as a numerical analysis. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. For the numerical analysis, a commercial software CFD-ACE+(V6.6) was employed for comparison with experimental data. Fixed pressure boundary condition and a 39900 structured grid system was used for numerical analysis. Velocity vector fields with a resolution of $6.7{\times}6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent melding process.

  • PDF

PIV measurements of a microfluidic elements fabricated in a plastic chip (플라스틱 미소유체요소 내부유동의 PIV 측정)

  • Lee, In-Won;Choi, Jay-Ho;Lee, In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.400-404
    • /
    • 2001
  • A micro-PIV(particle image velocimetry) measurement has been conducted to investigate flow fields in such microfluidic devices as microchannels and micronozzle. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. Velocity vector fields with a resolution of $6.7\times6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent molding process. Flow fields in a variety of microchannels as well as micronozzle have been investigated.

  • PDF

Design of a Charge-Redistribution ADC Using Bit Extension (비트 확장을 이용한 전하재분배 방식 ADC의 설계)

  • Kim, Kyu-Chull;Doh, Hyung-Wook
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.65-71
    • /
    • 2005
  • Physical signals generated in the real world are transformed into electrical signals through sensors and fed into electronic circuits. The electrical signals input to electronic circuits are in analog form, thus they must be converted to digital signals using an ADC(Analog-Digital Converter) for digital processing. Signal processing circuits and ADCs that are to be integrated on a single chip together with silicon micro sensors should be designed to have less silicon area and less power consumption. This paper proposed a charge redistribution ADC which reduces silicon area considerably. The proposed method achieves 8 bit conversion by performing 4-bit conversion twice. It reduced the area of capacitor array, which takes most of the ADC area, by 1/16 when compared to a conventional method. Though it uses twice the number of clocks as a conventional method, it would be appropriate to be integrated with a silicon pressure sensor on a single chip since it does not demand high conversion rate.

  • PDF

Study on the new development of combined electrochemical processes using pulse current (마이크로 펄스 전해 복합가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

Design of DC-DC Buck Converter Using Micro-processor Control (마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계)

  • Jang, In-Hyeok;Han, Ji-Hun;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

Performance Analysis of Coded FSK System for Multi-hop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크를 위한 부호화된 FSK 시스템의 성능 해석)

  • Oh, Kyu-Tae;Roh, Jae-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.408-414
    • /
    • 2007
  • Research advances in the areas of micro-sensor device and wireless network technology, has made it possible to develop energy efficient and low cost wireless sensor nodes. In this paper, the forward error control (FEC) scheme for lower power consumption and excellent BER(Bit Error Rate) performance during transmission propose in multi-hop wireless sensor network based on FSK modem. The FEC technique uses extra processing power related to encoding and decoding, it is need complex functions to be built into the sensor node. The probability of receiving a correct bit and codeword for relaying a frame over h nodes to the sink node is calculated as a function of channel parameter, number of hops, number of bits transmitted and the distance between the different nodes.

  • PDF