• Title/Summary/Keyword: Michaelis-Menten constant

Search Result 41, Processing Time 0.029 seconds

A New Method for Determination of Enzyme Reaction and Activity of Lysozyme with UV-Spectrophotometer (UV-분광광도계를 이용한 새로운 Lysozyme의 효소반응 및 활성측정법 연구)

  • Kim, Woon-Soo;Kim, Yong-Wook;Kim, Woo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.857-863
    • /
    • 1998
  • A simple and new experimental method for determination of lysozyme-M. lysodeikticus cell lysis reaction and lysozyme activity was suggested using Beer's law. The UV transmittance of the solution changed with the concentration of M. lysodeikticus and the relationship between the UV transmittance and M. lysodeikticus cell concentration followed Beer's Law. In addition, it was experimentally proven that the UV transmittance of the solution was not influenced by the lysozyme concentration and product of the lysis reaction. During the lysozyme-M. lysodeikticus cell lysis reaction, thus, M. lysodeikticus cell concentration in the solution could be measured in-situ by UV-spectrophotometer. By using these experimental data, kinetic Parameters of the Michaelis-Menten equation for the lysozyme-M. lysodeikticus cell 1ysis reaction was simply determined The maximum reaction rate constant ($k_3$) and Michaelis-Menten constants were $0.1734sec^{-1}$ and $9.83{\times}10^{-6}M$ respectively. The activity of the lysozyme could also be obtained with this experiment because the lysis reaction rate of the 1ysozyme depended on its activity.

  • PDF

An Effect of Ethanol on Polypyrrole-Glucose Oxidase Enzyme Electrode (Polypyrrole-Glucose oxidase 효소전극의 Ethanol 첨가효과)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.147-150
    • /
    • 1999
  • In the case of immobilizing of glucose oxidase in organic polymer using electrosynthesis, the glucose oxidase obstructs charge transfer and mass transport during the film growth. This may lead to short chained polymer and/or make charge-coupling weak between the glucose oxidase and the backbone of the polymer. That is mainly due to insulating property and net chain of the glucose oxidase. Since being the case, it is useless to increase in amount of glucose oxidase more than reasonable in the synthetic solution. We establish qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. As ethanol was added by 0.1 rnol dm" in the synthetic solution, Michaelis-Menten constants of the resulting enzyme electrode decreased from 30.7 mmol $dm^{-3}$ to about 2 mmol $dm^{-3}$. That suggests increase in affinity of the enzyme electrode for glucose and in amount of the immobilized enzyme.zyme.

  • PDF

Cloning, Expression, and Characterization of Para-Aminobenzoic Acid (PABA) Synthase from Agaricus bisporus 02, a Thermotolerant Mushroom Strain

  • Deng, Li-Xin;Shen, Yue-Mao;Song, Si-Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • The pabS gene of Agaricus bisporus 02 encoding a putative PABA synthase was cloned, and then the recombinant protein was expressed in Escherichia coli BL21 under the control of the T7 promoter. The enzyme with an N-terminal GST tag or His tag, designated GST-AbADCS or His-AbADCS, was purified with glutathione Sepharose 4B or Ni Sepharose 6 Fast Flow. The enzyme was an aminodeoxychorismate synthase, and it was necessary to add with an aminodeoxychorismate lyase for synthesizing PABA. AbADCS has maximum activity at a temperature of approximately 25℃ and pH 8.0. Magnesium or manganese ions were necessary for the enzymatic activity. The Michaelis-Menten constant for chorismate was 0.12 mM, and 2.55 mM for glutamine. H2O2 did distinct damage on the activity of the enzyme, which could be slightly recovered by Hsp20. Sulfydryl reagents could remarkably promote its activity, suggesting that cysteine residues are essential for catalytic function.

Geotrichum sp.를 이용한 biofiltration에서의 methyl ethyl ketone 제거

  • Choe, Jae-Heon;Park, Gyeong-Ran;O, Yeong-Suk;Choe, Seong-Chan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.560-563
    • /
    • 2001
  • Geotrichum sp. MF01, isolated from oil-contaminated soil, utilized methyl ethyl ketone(MEK) as the sole source of carbon and energy. The strain MF01 showed a Michaelis-Menten kinetics on MEK, and the kinetic parameters determined for MEK degradation were; specific removal rate, $r_{max}$ = 0.14 $h^{-1}$; half-saturation constant, $K_m$ = 5.88 mM. The adsorption of MEK by heat-killed strain was 0.62 mg at 8.07 mg MEK indicating that the degradation was the primary removal mechanism over adsorption. Biodegradation of MEK was studied in a biofilter using perlite, vermiculite 0:1, v/v) as supporting material. During 57 days of biofilter operation, $^3h^{-1}$.

  • PDF

Reaction Mode of Transglucosidase from Aspergillus niger for Production of Isomaltooligosaccharides (Aspergillus niger 유래의 Transglucosidase의 이소말토올리고당 생성반응 특성)

  • Ahn, Jang-Woo;Hong, Seung-Shu;Park, Kwan-Wha;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.273-278
    • /
    • 1996
  • The research was undertaken to characterize the reaction mode of transglucosidase (TG) from Aspergillus niger for the production of isomaltooligosaccharides such as isomaltose, panose and isomaltotriose. TG hydrolyzed maltose to glucose units and produced panose and glucose by transglucosylation. TG hydrolyzed panose to maltose and glucose when panose was used as an initial substrate. The reaction patterns of products when isomaltose, isomaltotriose or isomaltotetraose were used as substrates were different from the case when maltose was used as a substrate. Maltotriose and maltose showed the same formation pattern of products. TG also produced isomaltooligosaccharides from maltooligosaccharides. The production of panote by TG from maltose was mathematically described by Michaelis-Menten kinetics. The kinetic constants, $V_{max}$ (the maximum velocity) and $K_m$ (Michaelis constant), were estimated by Lineweaver-Burk plot to be 400 M/min and 21.4 mM, respectively.

  • PDF

Characterization of Enzymatic Properties of Streptomyces albus Amylase Expressed in Recombinant Bacillus subtilis (재조합 Bacillus subtilis 에서 발현된 Streptomyces albus 유래 amylase 의 효소공학적 특성)

  • Park, Geun-Woo;Kim, Myoung-Dong;Ahn, Jang-Woo;Kim, Young-Bae;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1426-1431
    • /
    • 1998
  • The research was undertaken to characterize enzymatic properties of Streptomyces albus amylase expressed in recombinant Bacillus subtilis. Molecular weight and pI of the purified enzyme were estimated to be 50 kD by SDS-PAGE and 4.3 by isoelectric focusing. The optimum temperature and optimum pH were $45^{\circ}C$ and 6.0, respectively. D-and Z-value were estimated to measure thermostability of the purified enzyme. The Z-value was estimated $17.7^{\circ}C$, which is lower than typical amylase. Maltotetraose was produced as a major component from soluble starch in the early state of reaction but gradually degraded to maltose. Thin layer chromatography was also performed to analyze the reaction products. The parameters involved in Michaelis-Menten enzyme kinetics were found to be the maximum velocity of 0.37 mM/min and the Michaelis constant of 0.13%, respectively.

  • PDF

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

Disposable Glucose Sensor Based on Platinised Carbon Paste Electrode (백금 도금된 탄소반죽 전극을 이용한 일회용 글루코오스 센서)

  • Lee Dong Joo;Yoo Jae Hyun;Cui Gang;Choi Moon Hee;Kim Moon Hwan;Ryu Joon Oh;Han Sang-Hyun;Cha Geun Sig;Nam Hakhyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.227-231
    • /
    • 1999
  • Disposable, amperometric glucose sensor was constructed using platinised carbon paste electrode. The sensor response was studied by amperometry and cyclic voltammetry applying sample solutions on the strip-type electrode. Platinization of screen-printed carbon paste electrode effectively improved the electrochemical reversibility of a mediator and the analytical characteristics of the sensor. The heterogeneous rate constant for $[Fe(CN)_6]^{4-/3-}$ was $1.45\times10^{-2}cm{\cdot}s^{-1}$. An applied potential of 0.3V vs. Ag/AgCl resulted in the best selectivity for glucose. The apparent Michaelis-Menten constant for glucose on the strip sensor, $K_m^{app}$, was 24.5 mM. To evaluate the analytical performance of the glucose sensor strip, a correlation study was performed with the NOVA S.P, Ultra M analyzer for 30 serum samples containing $80\~297mg/dL$ of glucose: the correlation coefficient value was 0.983. It can be seen that the strip sensor has satisfactory precision and accuracy.

Studies on the Pectolytic Enzymes from Byssochlamys fulva II (Byssochlamys fulca가 생성하는 펙틴질 분해효소에 관한 연구 II)

  • 남영중;김남수;홍순우
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.86-94
    • /
    • 1983
  • Polygalacturonase of Byssochlamys fulva was purified and characterized. Specific activity increased from 2.21 units/mg protein to 10.47 units/mg protein through $(NH_4)_2SO_4$ treatment, SephadexG-100 gel filtration, and DEAE-Sephadex ion exchange chromatography. Divalent cations, such as $Ca^{++}\;and\;Cu^{++}$, increased polygalacturonase activity greatly. Added as $10^{-3}M$ concentration, $Ca^{++}$ ion enhanced enzyme activity 9.8folds. Optimum temperature was $50^{\circ}C$ and optimum pH was 5.0. Activation energy of reaction was 8.69 Kcal/mole. Michaelis-Menten $constant(K_M)\;and\;V_{max}$ of reaction were $6.27{\times}10^{-3}mole/l\;and\;2.85{$\mu}moles/min$. Polygalacturonase of Byssochlamys fulva preferred polygalacturonic acid to pectin as substrate and was presumed as endo-type on the basis of the relationship between viscosity reduction and substrate degradation. Molecular weight of polygalacturonase was estimated as 55,000.

  • PDF

Characterization of Acid Phosphatase from Carrots (당근 Acid Phosphatase의 특성)

  • Kim, Gi-Nahm
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.490-495
    • /
    • 1994
  • Acid phosphatase (EC3.1.3.2) from carrots was partially purified by ammonium sulfate fractionation (30%-80%), Sephacryl S-200 gel filtration, cm-Sepharose CL-6B and DEAE -Sephacel ion exchange chromatography. The optimum ph and temperature of acid phosphatase from carrots were pH 5.5 and 55$^{\circ}C$, respectively. The enzyme was most stable at ph 6.0 and relatively unstable below pH 4.0 . The activation energy of the enayme was determined to be 10.6kcal/mole. The enzyme utilized p-nitrophenyl phosphate as a substrate among tested possible substrates, whereas it hydrolyzed 5' -IMP and 5'-GMP poorly. The Michaelis -Menten constant(Km) of the enzyme with p-nitrophenyl phosphate as a substrate was identified as 0.55mM. Amongtested metal ions and inhibitors, Al+++ Zn++, Cu++ , fluoride, metavanadate and molybdate ions inhibited the enzyme activity drastically.

  • PDF