• Title/Summary/Keyword: Michael reactions

Search Result 43, Processing Time 0.021 seconds

Studies on Synthesis and Heterocyclisation Reactions of Michael Products and Formation of New 1, 4-Thiazine Quinoxaline Derivatives

  • Mahgoub, S.A.
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.319-324
    • /
    • 1990
  • Synthesis of $\alpha$-piperidino and $\alpha$-morphelino styryl quinoxalinone 2f, 2g respectively by facile one step method is reported. The Michael adducts (3a-d) obtained by the interaction of 2-styryl-2 (1H) quinoxalinone (2) and ethylacetoacetate have been treated with resorcino and hydroxylamine separately. With resorcinol the chromones (4) are obtained whereas with ydroxylamine isoxazoles (6) are the products. Michael addition of acetylacetone to 2 leads to 3-[1'-aryl-2'-(2'-hydroxy-3'-quinoxalinyl)ethyl]-2, 4-pentanediones (5) which undergo cyclisation with hydroxylamine to give isoxazoles (7). Addition of thiopenol and thioglycolic acid to 2 gives 3-$\alpha$[$\beta$-(phenyl)-$\beta$-(plenylthio)]ethyl-2(1H)-quinoxalinone (8) and 3-$\alpha$-[$\beta$-phenyl)-$\beta$-(hydroxycarbonylmethylithio)]-ethyl-2(1H)-qui noxalinone (9) respectively. 2-Bromomethyl-2(1H)-quinoxalinone (1b) reacts with thioglycolic acid to gives S-[2 (1H)-oxoquionoxaline-3-yl-methyl] mercaptoacetic acid (10) which on cyclisation with acetic anhydride/pyridine affords 1, 2, 5, 6-tetrahydro [1, 4]thiazino[4, 3-a] quinoxaline-1, 6-dione (11).

  • PDF

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I;Hwang, So-Jeong;Park, Yoon-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1199-1203
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Single-walled Carbon Nanotube-triethylammonium Ionic Liquid as a New Catalytic System for Michael Reaction

  • Attri, Pankaj;Choi, Eun Ha;Kwon, Gi-Chung;Bhatia, Rohit;Gaur, Jitender;Arora, Bharti;Kim, In Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3035-3040
    • /
    • 2014
  • A new efficient catalytic method for aza/thia-Michael addition reactions of amines/thiols with higher product yields has been developed. Combining single-walled carbon nanotubes (SWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL) can work as a catalyst. We utilized Raman spectroscopy to gain insight into the interactions between IL and SWCNT. The interactions between SWCNT with TEAP were confirmed by the increasing intensity ratios and spectral shift in wavelength of the Raman D and G bands of SWCNT. Further, the morphology of the resulting composite materials of TEAP and SWCNT was determined by using scanning electron microscopy (SEM). Higher product yield in reduced reaction time is the key advantage of using bucky gel as a catalyst for Michael reaction.

Platinum-Catalyzed Reductive Aldol and Michael Reactions

  • Lee, Ha-Rim;Jang, Min-Soo;Song, Young-Jin;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.327-333
    • /
    • 2009
  • For the Pt-catalyzed nucleophilic addition of enones, Pt complexes were employed in the presence of various phosphine ligands and $H_2\;(or\;Et_3SiH),$ affording inter- and intra-molecular coupling products in good to modest yield. Depending on reaction protocols, different phosphine ligands were required to optimize the conditions. In the aldol reaction, the Pt catalyst involving $P(2,4,6-(OMe)_3C_6H_2)3\;or\;P(p-OMeC_6H_4)_3$ was chosen. Michael reaction proceeds in good yields in the presence of $P(p-CF_3C_6H_4)_3$. Regarding the activity of the reductants, $H_2$ exhibited superior activity to $Et_3SiH$, resulting in a shorter reaction time and higher yield in the aldol and Michael reaction. In light of the deuterium labeling studies, the catalytic cycle including the hydrometalation of the enones by the platinum hydride species was proposed.

Kinetics and Mechanism of Michael-type Reactions of Ethyl Propiolate with Alicyclic Secondary Amines in H2O and MeCN: Solvent Effect on Reactivity and Transition-State Structure

  • Kim, Song-I;Baek, Hye-Won;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2909-2912
    • /
    • 2009
  • The amines studied in this study are less reactive toward ethyl propiolate (3) in MeCN than in H$_2$O although they are 7 to 9 pK$_a$ units more basic in the aprotic solvent. The reactivity of morpholine and deuterated morpholine toward 3 is found to be identical, indicating that proton transfer occurs after rate-determining step (RDS). The fact that kinetic isotope effect is absent excludes a stepwise mechanism in which proton transfer occurs in RDS as well as a concerted mechanism in which nucleophilic attack and proton transfer occur concertedly through a 4-membered cyclic transition state (TS). Thus, the reactions have been concluded to proceed through a stepwise mechanism in which proton transfer occurs after RDS. Brønsted-type plots are linear with small ${\beta}_{nuc}$ values, i.e., ${\beta}_{nuc}$ = 0.29 in H$_2$O and ${\beta}_{nuc}$ = 0.51 in MeCN, indicating that bond formation is not advanced significantly in RDS. The small ${\beta}_{nuc}$ value also supports the conclusion drawn from the study of kinetic isotope effect.

Spectroscopic Analysis on the Michael Addition Reaction between Secondary Amino Group Containing Silica Nanoparticles with (Meth)acrylate Monomers (2차 아미노기를 갖는 실리카 나노입자와 (메타)아크릴레이트 단량체와의 마이클 부가반응에 대한 분광학적 분석)

  • Jeon, Ha-Na;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.668-676
    • /
    • 2012
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to introduce secondary amino groups on the silica surface. After modification of silica, we investigated effects of different types of (meth)acrylate group containing monomers on the Michael addition reaction to introduce reactive (meth)acrylate groups on the BTMA modified silica surface. We used two kinds of (meth)acrylate monomers, trimethylolpropane ethoxylate triacrylate (TMPET) which has three identical acrylate groups, and 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) which has one acrylate and one methacrylate group. We used fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand reactions between NH groups on the silica surface with (meth)acrylate groups of TMPET and AHM monomers. We found almost complete Michael addition reaction between all three acrylate groups of TMPET with NH groups on the BTMA modified silica. But, for the AHM treatment of BTMA modified silica, we found Michael addition reaction occurred only between acrylate groups of AHM and NH groups of silica surface, not between methacrylate groups of AHM and NH groups of BTMA modified silica surface.

SELECTIVE REDUCTION OF ACTIVE METAL CHLORIDES FROM MOLTEN LiCl-KCl USING LITHIUM DRAWDOWN

  • Simpson, Michael F.;Yoo, Tae-Sic;Labrier, Daniel;Lineberry, Michael;Shaltry, Michael;Phongikaroon, Supathorn
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.767-772
    • /
    • 2012
  • In support of optimizing electrorefining technology for treating spent nuclear fuel, lithium drawdown has been investigated for separating actinides from molten salt electrolyte. Drawdown reaction selectivity is a major issue that requires investigation, since the goal is to remove actinides while leaving the fission products and other components in the salt. A series of lithium drawdown tests with surrogate fission product chlorides was run to obtain selectivity data with non-radioactive salts, develop a predictive model, and draw conclusions about the viability of using this process with actinide-loaded salt. Results of tests with CsCl, $LaCl_3$, $CeCl_3$, and $NdCl_3$ are reported here. Equilibrium was typically achieved in less than 10 hours of contact between lithium metal and molten salt under well-stirred conditions. Maintaining low oxygen and water impurity concentrations (<10 ppm) in the atmosphere was observed to be critical to minimize side reactions and maintain stable salt compositions. An equilibrium model has been formulated and fit to the experimental data. Good fits to the data were achieved. Based on analysis and results obtained to date, it is concluded that clean separation between minor actinides and lanthanides will be difficult to achieve using lithium drawdown.