• Title/Summary/Keyword: Mica

Search Result 461, Processing Time 0.033 seconds

Mineralogical Characteristics of the Noro and Miag Series Soils Developed on the Cinder Cones in Jeju Island (제주도(濟州道) 산록(山麓)의 분석구(噴石丘)에서 발달(發達)된 노로통과 미악통 토양(土壤)의 광물학적(鑛物學的) 특성(特性))

  • Zhang, Yong-Seon;Kim, Yoo-Hak;Song, Kwan-Cheol;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.145-152
    • /
    • 2002
  • The composition of primary minerals in the rocks and secondary minerals of clay fractions of the soil developed on the cinder cones in the foot of Halla Mt., Jeju Island was investigated. The effects of parent materials on the physico-chemical properties and mineralogical characteristics were evaluated by XRD, DTA with the chemical composition of $H^+$ saturated clays. The main rock-forming minerals of a residual cinder cones were plagioclase with subsidiary minerals of hematite, gibbsite and quartz in the red cinder cone and of augite, quartz, feldspars and olivine in black cinder cone. It is demonstrated that ignition loss and sesquioxides content were higher in the red cinder soil than black cinder, which was resulted in the intermittent eruption of volcanic activity. For the chemical analysis of whole soils, $SiO_2/Al_2O_3$ ratio was increased from 2 to 3, but Ignition loss is decreased and $K_2O$ content are very low with increasing the soil depth in regard to the composition and kinds of clay minerals. No clay formation from micas mineral were in volcanic ashes. Dominant clay minerals of the cinder cone soils as a black and red cinder cone soil were allophane with some quartz and feldspars, while vermiculite, illite, kaolin were coexisted as a subsidiary minerals. But the red cinder cones soils had more hematite and gibbsite of the clay fractions than the black soils with magnetite. The exothermic pick of DTA at about $660^{\circ}C$ for cinder cone soils might be corresponded the oxidation magnetite to hematite reation. With regarding to the compositions of mineral detected by X-ray diffractogram and the properties of minerals by D.T.A thermogram, the dominant clay mineral was allophane of the cinder cone soils with some ferrous compounds, red colour of the cinder cone soils which are originated in hematite.

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea (토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동)

  • 이찬희;이현구;윤경무
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2001
  • Environmental pollution of the Tohyun mine creek area was investigated on the basis of geology, mineralogy and geochemistry. In soils and sediments of the mine area, ${Al_2}{O_3}/{Na_2O}$ and ${K_2}O/{Na_2}O$ ratios are partly negative correlation against ${SiO_2}/{Al_2}{O_3}$, respectively. Geochemical characteristics of some trace and rare earth elements such as V/Ni, Ni/Co, La/Ce, Th/Yb, Th/U, La/Th, ${La_N}/{Yb_N}$, La/Sc and Sc/Th are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. These results suggest that sediments source of the host shale around the mine area could be originated by basic to intermediate igneous rocks. Mineral compositions of soil and sediment near the mine area were partly variable mineralogy, which are composed of quartz, mica, feldspar, chlorite, clay minerals and some pyrite. Soils and sediments with highly concentrated heavy minerals, gravity separated mineralogy, are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various kinds of hydroxide minerals on the polished sections. As normalized by bed rock composition, average enrichment indices of major elements in sediments, precipitates, farmland soils and paddy soils are 1.0, 1.7, 0.9 and 0.8, respectively. Maximum concentration of environmental toxic elements in the mine creek are detected with Ag = 186 ppm, As = 17,100 ppm, Bi = ]27 ppm, Cd = 77 ppm, Cu = 12,299 ppm, Pb = 8,897 ppm, Sb = 1,350 ppm, W = 599 ppm and Zn = 12,250 ppm, which are increasing with total FeO increasing, and extremely high concentrations of surface sediments and precipitates near the waste rock dump. These toxic elements (As, Bi, Cd, Cu, Pb, Sb, W and Zn) of the samples, normalizing by host rock concentration, revealed that average enrichment index is 106.0 for sediments, 279.6 for precipitates, 3.5 for farmland soils and 1.6 for paddy soils. However, on the basis of EPA values, enrichment indices of all the samples are 40.7, 121.4, 1.3 and 0.6, respectively.

  • PDF

Hydrogeochemical Characteristics of Groundwater in Kwangiu City (광주광역시 지하수의 수리지화학적 특성 연구)

  • 이인호;조병욱;이병대;성익환;임용수
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.115-132
    • /
    • 2002
  • To distinguish the anthropogenic inputs from the chemical weathering with water-rock interaction on the chemical compositons of groundwater in Kwangju city, four different water groups were established based on the landuse type, lithology and topology. The sample from greenbelt area belongs to Group Ⅰ, whereas those from green buffer zone, urban area and industrial area belong to Group II, Group Ⅲ and Group Ⅳ, respectively. The geology of this city mainly consists of biotite granite and granitic gneiss. The concentration of main cations is subject to the behavior of feldspars, micas and carbonate minerals. Cl$\^$-/ and NO$_3$$\^$-/ are supplied by anthropogenic inputs such as domestic sewage whose concentration of these anions is highest in the Group Ⅲ samples. With the Piper diagram, the groundwaters of Group Ⅲ are mainly plotted in CaSO$_4$-CaCl$_2$ type, whereas those of other groups are plotted in Ca(HCO$_3$)$_2$ type, The calculation for the activities of ions and saturation indices of some minerals shows that most of the minerals are undersaturated and plotted in the area of equlibrium with kaolinite. Three factors were extracted from the factor analysis for chemical data. Factor 1 controlled by HCO$_3$$\^$-/, Ca$\^$2-/, SO$_4$$\^$2-/, Mg$\^$2+/ and Na$\^$+/, explains the dissolution of carbonate minerals. mica and plagioclase. Factor 2, controlled by Cl$\^$-/ and NO$_3$$\^$-/, explains the influence of artificial pollution. Factor 3, controlled by Mn, Fe and Zn is subject to the industrial waste water, but the evidence is not clear. Factor 1 is dominant in the Group I and II, indicating that those samples are subjected to natural chemical weathering, The higher scores of factor 2 in the Group Ⅲ samples indicate the potential artificial pollution.

A Study of Removal Property of Harmful Algal Blooms by Hwangto and Oriental Mineral Medicines (황토와 광물성 한약재의 적조구제 특성에 관한 연구)

  • Kim, Pil-Geun;Sung, Kyu-Youl;Jang, Young-Nam;Park, Maeng-Eon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.277-289
    • /
    • 2006
  • This study was carried out to find a new material having high removal efficiency for the harmful red tide. C. polykrikoides grow very fast and accumulate into dense and visible patches near the surface of the seawater ('Water bloom'). Some mineral medicines and Hwangto (reddish soil consist of clay minerals and Fe-oxides) were used in this study to remove C. polykrikoides. The pre-determined sprinkling ratio of mineral vs. seawater which contains approximately 5,000 cells/mL of C. polykrikoides was 10 g/L. In order to quantify the removal efficiency, the density of living cells was measured by counting with the Intervals of 0, 10, 30, and 60 minutes after sprinkling. Five Hwangtos feom different localities were examined in this study. It is found that a material with a high concentration of Fe and Al was the most effective to remove C. polykrikoides. After the sprinkling of the Hwangto showing the best removal efficiency in the test, 99% of total algaes were found to be eliminated within 60 minutes. Jeokeokji showed the highest removal efficiency among clay mineral medicines(92% removal efficiency after 60 minutes), and the rests in decreasing order are as follows: Gamto (91%) > Baekseokji (89%) > Hydromica (81%). In addition, Fe-oxide mineral medicine similarly looking as fine-grained earthy Daejaseok showed 100% removal efficiencyafter 30 minutes, and Wooyoeryang, 95% after 60 minutes. It is noted that even little addition (1 g/L) of Daejaseok, 10% of Hwangto concentration into seawater showed the removal efficiency of 100% after 60 minutes. From the results, it could be concluded that the fine-grained earthy Daejaseok was the most effective natural mineral medicine to remove the C. polykrikoides from seawater. Under the microscope the removal mechanism was found to be activated in the following order: adsorption, swelling of chain colony, chain colony crisis and algaecide.

Petrography and Geochemistry of the Ultramafic Rocks from the Hongseong and Kwangcheon areas, Chungcheongnam-Do. (충남 홍성 및 광천 지역 초염기성암의 암석 및 지구화학)

  • Song Suckhwan;Choi Seon Gyu;Oh Chang Hwan;Seo Ji Eun;Choi Seongho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.477-497
    • /
    • 2004
  • In the Hongseong and Kwangcheon areas, two ultramafic rocks are exposed as isolated bodies in the Precambrian Kyeonggi gneiss complex. The ultramafic rocks extend for several hundred meters to NNE direction and are contact with adjacent metasediments by steeply dipping faults. The rocks are dunite or harzburgite showing dominantly equigranular-mosaic and protogranular textures with a minor amount of porphyroclastic textures. They contain varying amounts of fosteritic olivine (F$o_{0.91-0.93}$), magnesian pyroxene (E$n_{0.89-0.93}$) and tremolitic to magnesian hornblende with minor amounts of spinel, serpentine, chlorite, magnetite, phlogopite and talc. The rocks are in contrast with adjacent gneiss complex or metabasite (amphibole, biotite, plagioclase, alkali-feldspar and quartz). Geochemically, these ultramafic rocks are characterized by high magnesium number (M$g_#$> 0.88) and transitional element (mainly, Ni>1716 ppm, Cr>1789 ppm), low alkali element (e.g. $K_2$O<0.09 wt.%, Na$_2$O<0.19 wt.%) and depletion of incompatible elements. The calculated correlation coefficients showed good positive correlations among the ferrous (e.g. Sc, V, Zn) elements, incompatible elements (e.g. REE), and among SiO$_2$ or $Al_2$O$_3$ with ferrous elements, whereas negative correlations are appeared between Ni and major elements. These results involve increasing of the ferrous- and $Al_2$O$_3$-bearing minerals(e.g. amphibole and mica) with decreasing of Mg-bearing minerals (e.g. olivine) depending on the degree of alteration. Calculated geothermometries and mineral assemblages suggest that the ultramafic rocks have been metamorphosed through the condition from the greenschist to amphibolite facies. Compared with ultramafic rocks elsewhere, it is thought that those of the Hongseong and Kwangcheon areas are derivatives of the depleted sources since they are depleted in incompatible elements including REE abundances. Moreover overall characteristics of the ultramafic rocks are similar to the those of orogenic related Alpine type ultramafic rocks, especially, shallow mantle slab varieties.

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Pedological Characteristics of Asian Dust in Korea (한국에 강하한 황사의 토양학적 특성)

  • Zhang, Yong-Seon;Kim, Yoo-Hak;Sonn, Yeon-Kyu;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Weon, Hang-Yeon;Joa, Jae-Ho;Eom, Ki-Cheol;Kim, Sang-Hyo;Kwak, Han-Kang;Kim, Han-Myeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.301-306
    • /
    • 2005
  • Asian dust was collected in Korea and soils in the arid area of northern China were analysed for its physical and chemical properties, and mineral compositions for in order to interpret the origin of Aeolian soils and estimate the effect of dust wind on the soil environment in Korea. Asian dust was collected at Suwon in Korea from 2002 to 2004. Soil samples were collected from the desert and Loess plateaus around Gobi desert in China. As a result of analysis of desert soil distributed on northern region and Loess soils in China, it was observed that soil pH was about 9, organic matter 11 to $23g\;kg^{-1}$, and CEC 7.1 to $18.4cmolc\;kg^{-1}$, showing a high spatial variation among different sampling locations. About 62 to 80% of particles were composed of quartz and feldspars, 2 to 14% calcite ($CaCO_3$) and dolomite [$Ca{\cdot}Mg(CO_3)_2$], and trace other clay minerals. All the dust particles in Korea were below 50 m in diameter, and the mineral compositions were quartz, mica, feldspar and some clay minerals. Major components of clay mineral of Asian dust was mainly illite as compared to the kaolin of soils in Korea. The base saturation of exchangeable Ca, Mg, K and Na in the Asian dust was above 250% due to the high content calcite. Most of upland soil in Suwon was thin and sharp type, but Asian dust in Korea was the spherical shape. Asian dusts in Suwon, Korea, did not show a definite mineralogical variation of the dust during the collection period. Difference between the Asian dust collected in Korea and the soils in arid area of China was observed in the physical and chemical properties, especially for particle size distribution, cations such as Ca, Mg, K and Na. However, some similarities were found on the mineral compositions and chemical properties between Asian dust collected in Korea and the loess of China.

Petrology and Geochemistry of Jurassic Daejeon and Nonsan Granitoids in the Ogcheon Fold Belt, Korea (옥천(沃川) 변성대(變成帶)에 분포하는 쥬라기(紀) 대전(大田) 및 논산(論山) 화강암류(花崗岩類)의 암석지화학적(岩石地化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.179-195
    • /
    • 1984
  • The Jurassic Daejeon and Nonsan granitoids are "S-type" syntectonic calc-alkaline two-mica monzogranite and granodiorite, respectively. With evidences of high CaO, $Al_2O_3$, LIL/HFS elements, total REE, (Ce/Yb)N and initial ($^{87}Sr/^{88}Sr$) ratio, and no significant Eu anomaly, the primary magmas for the Daejeon and Nonsan granitic rocks are derived from partial melting of the Precambrian granulite (e.g. grey gneisses). But those Jurassic granitoids crystallised from different chemical characteristics of parental magmas which is mainly due to varying degree of partial melting of the granulite (crustal anatexis). The absence of significant anomalous Eu($Eu/Eu^*=O.82{\sim}1.00$) in the Daejeon and Nonsan granitoids could indicate that feldspars, mainly plagioclase, did not separate from the magmas. The parental hydrous magmas could not rise appreciably above their source region before crystallisation. The Jurassic granitoids may be resulted by closing-collision situation and belong to the Hercynotype (Pitcher 1979) such as compressive ductile regime of an intracontinental orogen.

  • PDF

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF