• Title/Summary/Keyword: MgO nanorod

Search Result 7, Processing Time 0.021 seconds

Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment

  • Park, Sunghoon;Ko, Hyunsung;Mun, Youngho;Lee, Chongmu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3367-3371
    • /
    • 2013
  • MgO nanorods were fabricated by the thermal evaporation of $Mg_3N_2$. The influence of ZnO sheathing and hydrogen plasma exposure on the photoluminescence (PL) of the MgO nanorods was studied. PL measurements of the ZnO-sheathed MgO nanorods showed two main emission bands: the near band edge emission band centered at ~380 nm and the deep level emission band centered at ~590 nm both of which are characteristic of ZnO. The near band edge emission from the ZnO-sheathed MgO nanorods was enhanced with increasing the ZnO shell layer thickness. The near band edge emission from the ZnO-sheathed MgO nanorods appeared to be enhanced further by hydrogen plasma irradiation. The underlying mechanisms for the enhancement of the NBE emission from the MgO nanorods by ZnO sheathing and hydrogen plasma exposure are discussed.

Characterization of ZnO/MgZnO heterojunction grown by thermal evaporation (열기상증착법으로 성장된 ZnO/MgZnO 이종접합 나노막대의 물성분석)

  • Kong, Bo-Hyun;Jun, Sang-Ouk;Kim, Yung-Yi;Kim, Dong-Chan;Cho, Hyung-Koun;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.11-11
    • /
    • 2006
  • ZnO는 넓은 밴드갭(3.37eV)과 큰 액시톤(exciton) 결합에너지(60meV)를 가지는 II-VI족 화합물 반도체이다[1]. 이와같은 특성은 상온에서도 높은 재결합 효율이 기대되는 엑시톤 전이가 가능하여 자발적인 발광특성 및 레이저 발진을 위한 낮은 임계전압을 가져 일광효율이 큰 장점이 있다. 최근에는 ZnO의 전기적, 광학적, 자기적 특성을 높이기 위해 doping에 대한 연구가 많이 보고 되고 있다. 이중 ZnO내에 Mg을 doping하게 되면 Mg 조성에 따라 밴드갭이 3.3~7.7eV까지 변하게 된다. 그러나 이원계 상평형도에 따라 ZnO내에 고용될 수 있는 MgO의 고용도는 4at% 이하이다. 이는 ZnO는 Wurtzite 구조이고, MgO는 rocksalt 구조로 각각 결정구조가 다르기 때문이다. 본 연구는 열기상증착방법(thermal evaporation)으로 ZnO 템플레이트를 이용하여 MgZnO 나노막대를 합성하였고, Zn와 Mg의 서로 다른 녹는점을 이용해 2-step으로 성장을 하였다. 합성은 수평로를 사용하였으며, 반응온도 550, $700^{\circ}C$로 2-step으로 하였으며, 소스로 사용된 Zn(99.99%)과 Mg(99.99%) 분말을 산소를 직접 반응시켜 합성하였다. Ar 가스와 O2 가스를 각각 운반가스와 반응가스로 사용하였다. ZnO 템플레이트 위에 성장시킨 1차원 MgZnO 나노구조의 형태 및 구조적 특성을 FESEM과 TEM으로 분석하였다. 그리고 결정학적 특성은 XRD를 이용해 분석하였다.

  • PDF

Determination of Quantum well Thickness of ZnO-ZnMgO core-shell Cylindrical Heterostructures by Interband Optical Transitions

  • Sin, Yong-Ho;No, Seung-Jeong;Kim, Yong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.208-208
    • /
    • 2013
  • ZnO는 직접천이형 반도체로 약 3.37 eV의 넓은 에너지 band-gap과 60 meV의 비교적 큰 엑시톤 결합 에너지를 가지고 있다. 또한 단결정 성장 가능과 투명성 등 많은 장점들로 인하여 GaN와 대체할 자외선 또는 청색 발광소자나 ITO를 대체할 투명전극 같은 광범위한 광전소자로 큰 주목을 받으며 연구되어 왔다. 이러한 ZnO는 다양한 물질들의 첨가를 통해 인위적으로 특성변화가 가능한데 Mg, Be, Cd 첨가를 통한 에너지 밴드갭의 확장과 수축, Al 첨가를 통한 전기전도성의 증가 등이 그 예이다. 최근에는 밴드갭 조절을 이용한 ZnO-ZnMgO와 같은 이종접합구조가 광소자 등의 응용을 목적으로 많은 연구가 이루어지고 있다. 더불어 나노선이나 나노막대 같은 1차원 구조를 갖는 ZnO 계열 반도체의 연구는 현재 큰 이슈가 되고 있는 나노 크기의 소자 개발에 매우 큰 적용 가능성을 가지고 있다. 우리는 수열합성법을 이용하여 hexagonal ZnO 나노막대를 성장하고 그 표면에 core-shell 형태의 $ZnO-Zn_{1-x}Mg_xO$ (x=0.084) 양자우물을 원자층증착법으로 증착하였다. 본 연구에서는 만들어진 ZnO 나노막대와 ZnO-ZnMgO 나노막대, core-shell ZnO-ZnMgO 양자우물 sample들의 저온(5 K) Photoluminescence 측정을 통하여 광학적 band 구조를 분석하였다. 실험적으로 의도된 양자우물 두께와 다른 실제 형성된 양자무물의 두께를 알아내기 위하여 2차원 hexagonal 양자우물 band 구조에서 self-consistent nonlinear Poisson-Schr$\"{o}$dinger 방정식 계산과 컴퓨터 시뮬레이션을 이용하였으며, 이 방법으로 계산된 값과 실험값의 비교를 통하여 실제 형성된 양자우물의 두께를 정량적으로 유출할 수 있었다.

  • PDF

Si과 Mg Doping된 GaN 나노막대의 모양과 PL 특성 변화

  • Kim, Gyeong-Jin;Lee, Sang-Tae;Park, Byeong-Gwon;Choe, Hyo-Seok;Kim, Mun-Deok;Kim, Song-Gang;O, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.459-459
    • /
    • 2013
  • Si (111) 기판 위에 plasma assisted molecular beam epitaxy 법으로 Si과 Mg doping된 GaN 나노막대를 각 각 성장하고 나노막대의 모양과 광학적 특성을 조사하였다. Si이 doping된 GaN 나노막대는 biaxial m-plane 방향의 변화로 별 모양을 갖는 것을 관찰하였고 Mg doping된 GaN 나노막대의 지름은 줄어드는 것을 scanning electron microscopy로 확인하였다. 본 연구에서는 이러한 변화의 원인을 stress 때문으로 보고 x-ray diffraction과 raman scattering 측정을 통하여 구조적 변화를 조사하였다. 또한, stress에 의한 GaN 나노막대의광학적 특성 변화를 photoluminescence을 통하여 조사하였다. Doping한 GaN 나노막대의 특성조사를 통해 GaN 나노막대 성장 시 발생되는 stress의 영향을 이해하는데 중요한 정보를 제공할 것이다.

  • PDF