• Title/Summary/Keyword: MgO coating materials

Search Result 76, Processing Time 0.022 seconds

The discharge characteristic of Li ion doped MgO film in a flat fluorescent lamp structure

  • Ryu, Si-Hong;Lee, Seong-Eui;Ahn, Sung-Il;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1388-1390
    • /
    • 2007
  • This paper investigates how various concentrations of lithium ion influence on crystallization of MgO in thin films formed by spin coating and an the discharge characteristic in a flat fluorescent lamp structure. The XRD results indicate $Li^+$ ion enhances the growth of MgO crystal in a spin coated thin film. The discharge property with the $Li^+$ ion doped MgO films show the lithium ion in MgO film clearly reduce the initial discharge voltages of test devices. Interestingly, the test panels with various doped MgO film have somewhat higher static memory margin of than that of pure-MgO owing probably to the pore structure of spin coated MgO films. The CL spectra, which confirm that the doping creates defects energy levels in the band gap of MgO, show the $F^+$ center is the main defects in doped MgO films.

  • PDF

Bioactivity enhancement of zirconia substrate by surface coating of diopside bioceramics using sol-gel method (솔젤법에 의한 다이옵사이드 생체 세라믹의 표면코팅 및 지르코니아 기판의 생체활성 증진)

  • Park, Hyunjung;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.183-190
    • /
    • 2022
  • Diopside (CaMgSi2O6) is known to have high bioactivity as well as excellent mechanical properties. In this study, we tried to improve the bioactivity of zirconia ceramics by surface coating of diopside and its bioactivity was investigated through an in vitro test. Surface coating on zirconia substrate was prepared by sol-gel method using a diopside sol which was prepared by dissolving Ca(NO3)2·4H2O, MgCl2·6H2O and Si(OC2H5)4 in ethanol with a fixed molar ratio and then hydrolysis. To examine the bioactivity of diopside coating, we examined the surface dissolution and the precipitation of new hydroxyapatite particles through in vitro test in SBF (Simulated Body Fluid) solution. Dense and thick diopside coating layers could be fabricated on zirconia substrate by sol-gel method. Also, we confirmed that they contained high bioactivity from the in vitro test, indicated the precipitation of hydroxyapatite particles after the 14 days immersion in SBF solution. In addition, we checked that the bioactivity of diopside coated layers was dependent on the repeated coating cycle and coating thickness.

Preparation and Surface treatment of Spherical $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor

  • Seo, Kyoung-Soo;Lee, Dae-Won;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1079-1082
    • /
    • 2004
  • Dense $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor particles with a spherical shape have been synthesized through spray pyrolysis method using basic aluminum nitrate precursor as a spray solution. Also, a thin layer of silica on the surface of $BaMgAl_{10}O_{17}:Eu^{2+}$ particles were coated by hydrolysis reaction of alkoxide sources with the particles. The correlation between PL intensity and surface treatment by coating for the dense $BaMgAl_{10}O_{17}:Eu^{2+}$ particles have been investigated.

  • PDF

Effect of Electrolyte on Mechanical and Corrosion Properties of AZ91 Cast Magnesium Alloy Coated by Plasma Electrolytic Oxidation Method (플라즈마 전해 산화처리한 AZ91 주조마그네슘합금의 기계적 및 부식 특성에 미치는 전해질의 영향)

  • Kim, Bo-Sik;Lee, Du-Hyung;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.233-237
    • /
    • 2009
  • The effect of electrolyte on mechanical and corrosion properties of AZ91 magnesium alloy by plasma electrolytic oxidation (PEO) method was investigated. The coating layers formed in the silicate and the aluminate electrolytes showed porous structures. The small pores were randomly distributed on the coatings formed in aluminate electrolyte while the coatings formed in silicate electrolyte showed much bigger pores. In the aluminate electrolyte, the coatings were composed of Mg, MgO and $MgAl_2O_4$, whereas Mg, MgO, $MgAl_2O_4$ and $Mg_2SiO_4$ were identified in the coatings formed in silicate electrolyte. The hardness of coatings in the silicate electrolyte was higher than that of coating grown in the aluminate electrolyte. The AZ91 alloy coated in the silicate electrolyte had higher tensile strength and elongation than that coated in the aluminate electrolyte. In addition, the coatings formed in the silicate electrolyte showed much better corrosion resistance compared to the coatings formed in the aluminate electrolyte.

MOD-processed YBCO coated conductors on the $CeO_2$-buffered IBAD-MgO template

  • Shin, G.M.;Ko, R.K.;Oh, S.S.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2009
  • YBCO coated conductors (CC) on the $CeO_2$-buffered IBAD-MgO template were fabricated by metal-organic deposition (MOD) Process with Ba-trifluoroacetate and fluorine-free Y and Cu precursor materials. The precursor solution was coated on $CeO_2$-buffered IBAD MgO templates using the multiple dip-coating method, decomposed into inorganic precursors by pyrolysis up to $400^{\circ}C$ within 3 h, and finally fired at $740{\sim}800^{\circ}C$ in a reduced oxygen atmosphere. Microstructure, texture, and superconducting properties of YBCO films were found highly sensitive to both the firing temperature and time. The high critical current density ($J_C$) of $1.15\;MA/cm^2$ at 77.3K in the self-field could be obtained from $1\;{\mu}m$ thick YBCO CC, fired at $740^{\circ}C$ for 3.5 h, implying that high performance YBCO CC is producible on IBAD MgO template. Further enhancement of $J_C$ values is expected by improving the in-plane texture of $CeO_2$-buffer layer and avoiding the metal substrate contamination.

Corrosion and Adhesion of Electrophoretic Paint on AZ31 Magnesium Alloy Pretreated in Cerium Chemical Conversion Coating Solution

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.189-189
    • /
    • 2015
  • In this study, the corrosion resistance and adhesion of electrophoretic paint (E-paint) were studied on AZ31 magnesium alloy pretreated in cerium chemical conversion coating solutions with the addition of various ethanol concentrations. It was found that with increasing ethanol concentration from 0 to 90 percent can decrease the formation of $Mg(OH)_2/MgO$ and increase the formation of nano-crystalline cerium oxides on the coating. Both corrosion resistance and adhesion of E-painted AZ31 increased with increasing ethanol concentration. The best E-paint sample was observed on the sample pretreatment in cerium chemical conversion coating solution with the addition of 80 percent of ethanol. This sample showed an excellent adhesion without paint detached after water immersion test for 500 h at $40^{\circ}C$, and only a few blisters observed at the near scratched sites after 1000 h salt-spray test.

  • PDF

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

The Removal of Inclusions in Molten Steel by Coating Materials for Tundish (턴디쉬용 코팅재에 의한 강중 개재물 저감효과)

  • 조문규;이석근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • A MgO-CaO-based coating material for ferrous melt refining is applied to the tundish operation for mol-ten steel having low carbon. The changes in the total oxygen content insoluble aluminum content and the content of inclusions in molten steel during tundish operation were measured at the pouring part strand of tundish and mold. On the basis of the experimental results the interfacial reaction occurring between the coating materials and the molten steel in tundish was discussed and compared with the theoretical con-sideration. It is concluded that interfacial reaction is not active at the strand part of tundish but is active at the pouring part because of the turbulent flow in the molten steel.

  • PDF

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.