• Title/Summary/Keyword: MgO barrier

Search Result 66, Processing Time 0.035 seconds

Effects of Adding Mg to AlSi Coating for Hot Stamping Steel (자동차용 핫스탬핑 AlSi 도금중 Mg 첨가효과)

  • Yang, Wonseog;Lee, Jeamin;Kim, Changkyu;Ahn, Seungho;Castaneda, Homero
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.196-203
    • /
    • 2021
  • To improve corrosion resistance and reduce the hydrogen uptake of 22MnB5, up to 5% Mg was added to the AlSi coating of 22MnB5. After hot-stamping and electrocoating were done on the metallic-coated specimen, the surface characteristics of the steel, hydrogen uptake content, and corrosion resistance were examined by transmittance electron microscopy, thermal desorption spectrometry, cyclic corrosion testing, and electrochemical impedance spectroscopy. Mg was investigated as MgO on the surface layer after hot-stamping while it existed as Mg2Si before hot-stamping. The total hydrogen content of 22MnB5 was decreased along with the Mg content. However, there was no difference at 0.2 wt% or more. When a small amount of Mg was added, the coating corrosion resistance was decreased, but when it was added at around 1.0 wt%, the greatest corrosion resistance increase was seen. However, when 3 wt% or more was added excessively, the corrosion resistance was decreased. MgO on the surface was considered to suppress H uptake by the AlSi melting solution and increase the barrier effect of the coating.

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity

  • Choi, Jong Hee;Jang, Minhee;Nah, Seung-Yeol;Oh, Seikwan;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.379-388
    • /
    • 2018
  • Background: Ginsenosides are the main ingredients of Korean Red Ginseng. They have extensively been studied for their beneficial value in neurodegenerative diseases such as Parkinson's disease (PD). However, the multitarget effects of Korean Red Ginseng extract (KRGE) with various components are unclear. Methods: We investigated the multitarget activities of KRGE on neurological dysfunction and neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. KRGE (37.5 mg/ kg/day, 75 mg/kg/day, or 150 mg/kg/day, per os (p.o.)) was given daily before or after MPTP intoxication. Results: Pretreatment with 150 mg/kg/day KRGE produced the greatest positive effect on motor dysfunction as assessed using rotarod, pole, and nesting tests, and on the survival rate. KRGE displayed a wide therapeutic time window. These effects were related to reductions in the loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons, apoptosis, microglial activation, and activation of inflammatory factors in the substantia nigra pars compacta and/or striatum after MPTP intoxication. In addition, pretreatment with KRGE activated the nuclear factor erythroid 2-related factor 2 pathways and inhibited phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways, as well as blocked the alteration of blood-brain barrier integrity. Conclusion: These results suggest that KRGE may effectively reduce MPTP-induced neurotoxicity with a wide therapeutic time window through multitarget effects including antiapoptosis, antiinflammation, antioxidant, and maintenance of blood-brain barrier integrity. KRGE has potential as a multitarget drug or functional food for safe preventive and therapeutic strategies for PD.

Electronic and Structural Properties of Interfaces in Fe∖MgO∖Cu-Phthalocyanine Hybrid Structures (Fe∖MgO∖Cu-Phthalocyanine 복합구조 계면구조와 그 전자기적 특성)

  • Bae, Yu Jeong;Lee, Nyun Jong;Kim, Tae Hee;Pratt, Andrew
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.184-187
    • /
    • 2013
  • The influence of insertion of an ultra-thin Cu-Phthalocyanine (CuPc) between MgO barrier and ferromagnetic layer in magnetic tunnel juctions (MTJs) was investigated. In order to understand the relation between the electronic and structural properties of Fe${\backslash}$MgO${\backslash}$CuPc, the surface (or interface) analysis was carried out systematically by using spin polarized metastable He de-excited spectroscopy for the CuPc films grown on the Si(001)${\backslash}$5 nm MgO(001)${\backslash}$7 nm Fe(001)${\backslash}$1.6 nm MgO(001) multilayer structure as the thickness of CuPc increases from 0 to 5 nm. In particular, for the 1.6 nm CuPc surface, a rather strong spin asymmetry between up- and down-spin band appears while it becomes weaker or disappears for the CuPc films thinner or thicker than ~1.6 nm. Our results emphasize the importance of the interfacial electronic properties of organic layers in the spin transport of the hybrid MTJs.

Discharge analysis of SrO- and SrCaO-PDP operated at lower voltage

  • Uchida, G.;Uchida, S.;Yano, T.;Awaji, N.;Kajiyama, H.;Shinoda, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.177-180
    • /
    • 2009
  • Here is presented the measurement on SrO- and SrCaO-PDP operated at lower voltage. SrO- and SrCaO-PDP attain high luminous efficacy at low voltage, where the breakdown voltage is 30 % lower than that of the ordinary MgO-PDP. A one-dimensional fluid model is applied for the simulation of PDP discharge. High VUV radiation efficiency is confirmed at high ${\gamma}_i$ and both low and high $V_s$ as in the experiment. Discharge analysis in simulation also shows that the high ${\gamma}_i$ protective layer leads to high plasma density especially near the cathode electrode, being responsible for high efficiency.

  • PDF