• Title/Summary/Keyword: MgO Protecting Layer

Search Result 29, Processing Time 0.039 seconds

Quantum Chemical Molecular Dynamics and Kinetic Monte Carlo Approach to the Design of MgO Protecting Layer in Plasma Display Panel

  • Kubo, Momoji;Kikuchi, Hiromi;Tsuboi, Hideyuki;Koyama, Michihisa;Endou, Akira;Carpio, Carlos A. Del;Kajiyama, Hiroshi;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.371-374
    • /
    • 2006
  • We developed new quantum chemical molecular dynamics and kinetic Monte Carlo programs to simulate the destruction processes of MgO protecting layer in plasma display panel. Our simulation results proposed that MgO(111) surface with nano-dot structures covered by (001) facets has the highest stability, which is against the previous knowledge. The formation of nano-dot structures on the MgO(111) surface covered by (001) facets was found to be the reason for the high stability of the MgO(111) surface. Furthermore, the effect of grain boundary on the stability of MgO surfaces was also clarified.

  • PDF

Effect of various MgO E-beam evaporation sources on the characteristics of MgO protecting layer of AC-PDP

  • Park, Sun-Young;Lee, Mi-Jung;Kim, Soo-Gil;Kim, Hyeong-Joon;Moon, Sung-Hwan;Kim, Jong-Kuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.223-226
    • /
    • 2004
  • MgO thin films were deposited bye-beam evaporation on $SiO_2$/Si wafers for the application of a protective layer in alternating current plasma display panels (AC-PDPs). Three different MgO sources, single crystal, melted polycrystal and sintered polycrystal, were used to find out the change of the properties of MgO protective layer depending on the source type. The properties of MgO thin films such as density, orientation and surface morphology were influenced by the source type. MgO thin films deposited with the melted polycrystal source had the highest density with the highest (100) preferred orientation, whereas the films deposited with the sintered polycrystal source had the lowest density with less preferred orientation. Such a result seems to be originated from the different mobility of adatoms on the surface of the deposited MgO thin films. Different microstructures of MgO thin films deposited even in the same deposition condition were observed depending on the MgO source type, resulting in different discharge characteristics.

  • PDF

The Outgasing characteristics of MgO film for protecting layer of plasma display panel

  • Song, Byoung-Kwan;Lee, Young-Joon;Lee, Chang-Heon;Hwang, Hyun-Ki;Yeom, Guen-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.621-624
    • /
    • 2002
  • In this study, outgassing characteristics of MgO films, and the plasma cleaning effects of the deposited MgO films by atmospheric pressure plasma on outgassing rate were compared. The MgO layer was heated up to 350 $^{\circ}C$ and the outgassing characteristics were observed for the heated conditions. As the main impurity species $H_2,\;H_2O,\;N_2,\;CO_2,\;and\;H_2O$ were released from this panel. Impurity species of plasma treatment panel were lower than non-treated panels for the heating temperature

  • PDF

Optimization of address delay time in PDP by controlling the MgO characteristics

  • Jeong, Sang-Cheol;Jeong, Jong-In;Kim, Jeong-Jun;Song, Min-Ki;Kim, Ki-Bum;Mo, Bu-Kyung;Woun, Yong-Kyun;Yoon, Chang-Bun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.965-969
    • /
    • 2008
  • MgO thin film is widely used in PDP panel for protecting the dielectric layer and making firing voltage low. In this paper, the MgO thin film and discharge characteristics was analyzed as hydrogen flow rate increasing. Using hydrogen in deposition chamber makes add delay time of PDP module longer or shorter. It is the reason why thin film surface layer thickness on the MgO surface changes.

  • PDF

Electro - Optical Characteristics of MgO Double Layer prepared by E-beam and Sputtering Method (E-beam과 R.F. 마그네트론 스퍼터링을 사용한 double MgO박막의 전기-광학적 특성)

  • Ok, J.W.;Kim, H.J.;Choi, J.H.;Choi, J.Y.;Kim, D.H.;Lee, H.J.;Yoo, S.B.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2172-2174
    • /
    • 2005
  • MgO has been used as the material of the protecting layer for AC PDP. AC PDP is influenced by characteristics of the surface glow discharge on the MgO thin film. Because MgO thin film is practically discharge electrodes, the discharge characteristics of MgO thin film should be varied with the method of deposition. In this study, changing order and time of deposition, we use electron beam evaporation system and R.F reactive magnetron sputtering system in the MgO deposition. Particularly, after using electron beam evaporation system, we use R.F. reactive magnetron sputtering system in the MgO deposition, then we could get lower amount of charge and higher luminance efficiency than only using electron beam evaporation system.

  • PDF

Ultra accelerated molecular dynamics study on electronic structure and luminous efficacy of PDP protecting layer

  • Takaba, Hiromitsu;Serizawa, Kazumi;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Kubo, Momoji;Kajiyama, Hiroshi;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.169-172
    • /
    • 2009
  • We developed ultra-accelerated quantum chemical molecular dynamics and characterization simulators for study and design of plasma display panel (PDP) related materials. By use of these simulators, realistic structure of PDP materials is drawn on the computer. Furthermore, based on the structures, various properties such as secondary electron emission coefficient are successfully evaluated. In this report, we will discuss the theoretical secondary electron emission coefficient for several protecting layer materials and the effect of surface structure on the properties based on the result of atomistic simulations.

  • PDF

Preparation of MgO Protective layer by reactive magnetron Sputtering (반응성 스퍼트링에 의한 MgO 유전체 보호층 형성에 관한 연구)

  • Ha, H. J.;Lee, W. G.;Ryu, J. H.;Song, Y.;Cho, J. S.;Park, C. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.59-62
    • /
    • 1996
  • Plasma displays (PDP) as a large area wall-hanging display device are rabidly developed with flat CRT, TPT LCD and etc. Especially, AC Plasma Display Panels(AC PDPs) have the inherent memory function which is effective for large area displays. The memory function in AC PDPs is caused by the accumulation of the electrical charge on the protecting layer formed on the dielectric layer. This MgO protective layer prevents the dielectric layer from sputtering by ion in discharge plasma and also has the additional important roll in lowering the firing voltage due to the large secondary electron emission coefficient). Until now, the MgO Protective layer is mainly formed by E-Beam evaporation. With increasing the panel size, this process is difficult to attain cost reduction, and are not suitable for large quantity of production. To the contrary, the methode of shuttering are easy to apply on mass production and to enlarge the size of the panel and shows the superior adhesion and uniformity of thin film. In this study, we have prepared MgO protective layer on AC PDP Cell by reactive magnetron sputtering and studied the effect of MgO layer on the surface discharge characteristics of ac PDP.

  • PDF