• 제목/요약/키워드: MgO Protecting Layer

검색결과 29건 처리시간 0.032초

Molecular Dynamics and Quantum Chemical Molecular Dynamics Simulations for the Design of MgO Protecting Layer in Plasma Display Panel

  • Kubo, Momoji;Serizawa, Kazumi;Kikuchi, Hiromi;Suzuki, Ai;Koyama, Michihisa;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kajiyama, Hiroshi;Shinoda, Tsutae;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1049-1052
    • /
    • 2008
  • We developed novel molecular dynamics and quantum chemical molecular dynamics simulators for the design of MgO protecting layer in plasma display panel. These simulators were applied to the investigations on the destruction processes of the MgO protecting layer as well as the evaluation of its second electron emission ability. From the simulation results, we successfully proposed new guidelines for MgO protecting layer with high durability and high second electron emission ability.

  • PDF

AC PDP의 MgO 활성화 조건과 그 방전 특성에 관한 연구 (A Study on the Discharge Characteristics and Optimum Activation Conditions of MgO Thin Film in AC POP)

  • 김영기;김석기;박병언;박명주;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1758-1760
    • /
    • 1998
  • MgO Protecting layer in AC PDP prevents ion bombardment in discharge plasma. The MgO layer also has the additional importance in lowering the firing voltage due to a large secondary electron emission coefficient. Until now, the MgO protecting layer is mainly prepared by E-beam Evaporation. However, the optimum activation manufacturing process of MgO thin film wasn't well known. Therefore in this study, after MgO protecting layer is prepared on dielectric layer by E-beam evaporation and liquid MgO spin coating, we carried out activation process of MgO thin film as a parameter of Temperature, Operating time and Operating pressure. In addition, discharge characteristics are also studied as a parameter of activation conditions.

  • PDF

Nano-porous $Al_2O_3$ used as a protecting layer of AC Plasma Display Panel

  • Park, Sung-Yun;Hong, Sang-Min;Shin, Bhum-Jae;Cho, Jin-Hoon;Kim, Seong-Su;Park, Sung-Jin;Lee, Kyu-Wang;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.359-361
    • /
    • 2003
  • Nano-porous alumina was investigated as a protecting layer in an AC Plasma Display Panel. A 2 ${\mu}m$ thick nano-porous $Al_2O_3$ layer inserted with MgO was formed on the dielectric layer instead of the conventional 500 nm-thick MgO thin film. Both nano-porous $Al_2O_3$layer and inserted MgO were prepared by wet process. The luminance and luminous efficiency of 3-inch test panel adopting nano-porous $Al_2O_3$ was higher than that of the conventional PDP.

  • PDF

플라즈마 디스플레이 보호막으로 사용되는 마그네슘 산화막(MgO)의 내식각 특성 (The characteristics of anti-erosion for MgO protecting layer in plasma display panel)

  • 최훈영;이석현
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.163-169
    • /
    • 2000
  • In this paper, we showed the erosion characteristic of MgO protector layer releated to lifetime of plasma display panel(PDP). We observed MgO erosion characteristic as a functions of deposition conditions, pressure and distance between electrodes. In RIE condition of Xe gas, the lowest erosion rate appears in the conditions of no heating bias voltage -30V and pressure 5mtorr. In general, as deposition rate increases, erosion rate decreases. In real panel, when the gap distance between electrodes is narrow and the pressure is low, the heavy plasma damage appears. Also, the surfaces between electrodes and on the bus electrode are extremely damaged.

  • PDF

진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성 (Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing)

  • 박성현;이능헌
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

AC Plasma Display Panel (PDP)에서 MgO 박막의 내스퍼터성에 관한 연구 (A Study on the Sputtering-resistant Properties of MgO Thin-film in the AC Plasma Display Panel (PDP))

  • 지성원;여재영;이우근;조정수;박정후
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.361-366
    • /
    • 1999
  • The life of AC PDP depends largely on the sputtering-resistant property of the protecting layer such as MgO thin-film. However, it is very difficult to measure the sputtering-resistant property in the stable driving conditions of AC PDP. In this paper we have suggested a high speed measurement technique of the sputtering-resistant property of MgO thin-film by applying the MgO thin-film as the target of RF magnetron sputtering system. We have also applied this method to the e-beam MgO and sputter-MgO and e-beam MgO superior to sputter-MgO 3 times over. Also, the relation of Xe gas partial pressure(X) and sputtered thickness(Y) was Y=3.4X+13.5.

  • PDF

Si가 첨가된 MgO의 기초 물성 및 응용 연구 (A Study on the Material Property and Application of the Si-doped MgO Layer)

  • 조성용;박정후;유윤식;이돈규
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2441-2445
    • /
    • 2009
  • The effects of Si -doped MgO have been investigated in order to improve the material properties of the MgO protective layer in plasma display panels. A small amount of Si is added to the MgO pellet while the MgO layer is being deposited by using an electron-beam evaporation method. Both the surface characteristics of the protecting layer and the electro-optical properties of 4 in. test panels are investigated, such as XRD patterns, SEM images, firing and sustain voltages, secondary electron emission coefficient($\gamma$), luminance, luminous efficacy and lifetime. The firing and sustain voltage are minimized when Si concentration is 0.038%, where the luminance and luminous efficacy increase up to 17% and 26% compared with that of the pure MgO film, separately, and lifetime also shows good characteristics.

Ion Induced Secondary Electron Emission of MgO with Patterned Gold Line Charge Neutralization

  • Lee, Jong-Wan;Lee, Kie-Young;Kim, Hong-Gyu;Ahn, Joon-Hyung;Jung, Won-Joon;Yoon, Sean-J;Byungdu Oh
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제5권1호
    • /
    • pp.7-10
    • /
    • 2001
  • Ion induced secondary electron emission coefficients γ of protecting layers of an AC plasma display panel(AC-PDP) have been measured. In order to solve the surface charging effect during the measurement at insulating samples like MgO, a new method with the patterned gold line charge neutralization has been introduced. The measurement was performed at the samples, MgO and MgO+MgF$_2$, which showed a great difference in the firing voltage between the two protecting layers. The γ value has been compared with the firing voltage Vf of the AC-PDP with the same protecting layer. Correct relationship between γ and Vf has been observed. Thus, the patterned gold line method has been proven to be successful for the measurement of the secondary electron emission yield at insulator sample surfaces.

  • PDF

불평형 마그네트론 스파터링에 의한 AC PDP용 MgO 보호층의 최적형성조건에 관한 연구 (A Study on the Optimum Preparation Conditions of MgO Protecting Layer in AC PDP by Unbalanced Magnetron Sputtering)

  • 김영기;박정태;김규섭;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1096-1098
    • /
    • 1999
  • The performance of as plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the optimum preparation conditions of MgO Protecting layer by RF unbalanced magnetron sputtering(UBMS) in surface discharge type AC PDP. The samples prepared with the do bias voltage of -10V showed lower discharge voltage, lower erosion rate as a consequence of ion bombardment, higher optic transparency and higher crack resistance in annealing process than those samples prepared by conventional magnetron sputtering or E-beam eraporation.

  • PDF

Oxidation Resistance and Electrical Conductivity of $Ti_3SiC_2$ with Thin Oxide Layer

  • Hwang, Sung-Ik;Han, Kyoung-Ran;Kim, Chang-Sam
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1110-1111
    • /
    • 2006
  • [ $Ti_3SiC_2$ ] was coated with $Al_2O_3$, MgO and $SiO_2$ respectively by sol-gel method and cured at 900 and $1200^{\circ}C$. The coated oxides did not react with $Ti_3SiC_2$ at $900^{\circ}C$ but reacted with it to form $TiC_x$ at $1200^{\circ}C$. The specimen coated with $SiO_2$ at $900^{\circ}C$ formed a dense protecting layer and showed the best oxidation resistance at $800^{\circ}C$ in air. However, the dense protecting layers did not form in $Al_2O_3$ and MgO coated specimens cured even at $900^{\circ}C$. MgO coated specimen showed the worst improvement in the oxidation resistance because the reactivity of MgO with $Ti_3SiC_2$ was highest. On the other hand, the electrical conductivities were measured in MgO and $Al_2O_3$ coated specimens to have TiCx but could not be measured in the $SiO_2$ coated ones because of the nonconductive dense protected layers.

  • PDF