• Title/Summary/Keyword: MgO Coatings

Search Result 50, Processing Time 0.026 seconds

Characteristics of Plasma Electrolytic Oxide Coatings on Mg-Al Alloy with Coating Time (피막처리 시간에 따른 Mg-Al 합금의 플라즈마 전해 산화 피막 특성)

  • Lee, Du-Hyung;Kim, Bo-Sik;Chang, Si-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.241-246
    • /
    • 2008
  • Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and $Mg_2SiO_4$. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.

Effect of Electrolyte on Mechanical and Corrosion Properties of AZ91 Cast Magnesium Alloy Coated by Plasma Electrolytic Oxidation Method (플라즈마 전해 산화처리한 AZ91 주조마그네슘합금의 기계적 및 부식 특성에 미치는 전해질의 영향)

  • Kim, Bo-Sik;Lee, Du-Hyung;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.233-237
    • /
    • 2009
  • The effect of electrolyte on mechanical and corrosion properties of AZ91 magnesium alloy by plasma electrolytic oxidation (PEO) method was investigated. The coating layers formed in the silicate and the aluminate electrolytes showed porous structures. The small pores were randomly distributed on the coatings formed in aluminate electrolyte while the coatings formed in silicate electrolyte showed much bigger pores. In the aluminate electrolyte, the coatings were composed of Mg, MgO and $MgAl_2O_4$, whereas Mg, MgO, $MgAl_2O_4$ and $Mg_2SiO_4$ were identified in the coatings formed in silicate electrolyte. The hardness of coatings in the silicate electrolyte was higher than that of coating grown in the aluminate electrolyte. The AZ91 alloy coated in the silicate electrolyte had higher tensile strength and elongation than that coated in the aluminate electrolyte. In addition, the coatings formed in the silicate electrolyte showed much better corrosion resistance compared to the coatings formed in the aluminate electrolyte.

Effect of Plasma Electrolytic Oxidation Conditions on Oxide Coatings Properties of Die-Cast AZ91D Mg Alloy (플라즈마 전해 산화 처리조건에 따른 다이캐스트 AZ91D Mg 합금 위에 제조된 산화피막 특성)

  • Park, Seong-Jun;Lim, Dae-Young;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.609-616
    • /
    • 2019
  • Oxide coatings are formed on die-cast AZ91D Mg alloy through an environmentally friendly plasma electrolytic oxidation(PEO) process using an electrolytic solution of $NaAlO_2$, KOH, and KF. The effects of PEO condition with different duty cycles (10 %, 20 %, and 40 %) and frequencies(500 Hz, 1,000 Hz, and 2,000 Hz) on the crystal phase, composition, microstructure, and micro-hardness properties of the oxide coatings are investigated. The oxide coatings on die-cast AZ91D Mg alloy mainly consist of MgO and $MgAl_2O_4$ phases. The proportion of each crystalline phase depends on various electrical parameters, such as duty cycle and frequency. The surfaces of oxide coatings exhibit as craters of pancake-shaped oxide melting and solidification particles. The pore size and surface roughness of the oxide coating increase considerably with increase in the number of duty cycles, while the densification and thickness of oxide coatings increase progressively. Differences in the growth mechanism may be attributed to differences in oxide growth during PEO treatment that occur because the applied operating voltage is insufficient to reach breakdown voltage at higher frequencies. PEO treatment also results in the oxide coating having strong adhesion properties on the Mg alloy. The micro-hardness at the cross-section of oxide coatings is much higher not only compared to that on the surface but also compared to that of the conventional anodizing oxide coatings. The oxide coatings are found to improve the micro-hardness with the increase in the number of duty cycles, which suggests that various electrical parameters, such as duty cycle and frequency, are among the key factors controlling the structural and physical properties of the oxide coating.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Characteristics of Plasma Electrolytic Oxidation Coatings on Mg-Zn-Y Alloys Prepared by Gas Atomization (가스 분사법으로 제조한 Mg-Zn-Y 합금의 플라즈마 전해 산화 피막 특성에 관한 연구)

  • Chang, Si-Young;Cho, Han-Gyoung;Lee, Du-Hyung;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.372-379
    • /
    • 2007
  • The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and $Mg_2SiO_4$ oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.

Optimization and Efficiency Improvement of BCSC Solar Cells Using $MgF_{2}/CeO_{2}$Double Layer Antireflection Coatings ($MgF_{2}/CeO_{2}$ 이중반사방지막을 이용한 BCSC태양천지의 효율향상과 최적화)

  • 이욱재;임동건;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.251-254
    • /
    • 2001
  • This paper describes an efficiency improvement of buried contact solar cell (BSCS) with a structure of MgF$_2$/CeO$_2$/Ag/Cu/Ni grid/n$^{+}$ emitter/p-type Si base/p$^{+}$/Al. Theoretical and experimental investigations were performed on a double layer antireflection (DLAR) coating of MgF$_2$/CeO$_2$. We investigated CeO$_2$ films as an AR layer because they have a proper refractive index of 2.46 and demonstrate the same lattice constant as Si substrate. An optimized DLAR coating shewed a reflectance as low as 2.04 % in the wavelengths ranged from 0.4 ${\mu}{\textrm}{m}$ to 1.1 ${\mu}{\textrm}{m}$. BCSC cell efficiency was improved from 16.2 % without any AR coating to 19.9 % by employing DLAR coatings. Further details on MgF$_2$/CeO$_2$ DLAR coatings on the BCSC cells are presented in this paper.per.

  • PDF

Microstructure and Corrosion Properties of AZ91D Magnesium Alloy treated by Plasma Electrolytic Oxidation (플라즈마 전해 산화 처리한 AZ91D 마그네슘합금 피막의 미세조직 및 부식 특성)

  • Chang, Si-Young;Kim, Ye-Lim;Kim, Yang-Do
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2008
  • The characteristics, such as roughness, thickness, microhardness and corrosion resistance, of plasma electrolytic oxide coatings on AZ91D alloy were investigated under the processing condition of various coating times. The coatings on AZ91D alloy consisted of MgO, $MgAl_{2}O_{4}$ and $Mg_{2}SiO_{4}$ oxides. The surface roughness and thickness of coatings became larger with increasing the coating time. The microhardness in cross section of coatings was much higher than not only that in surface but that in the conventional anodic oxide coatings, which increased progressively as the coating time increased. After being immersed in 3.5%NaCl solution and methyl alcohol, the corrosion resistance of AZ91D alloy was markedly improved by plasma electrolytic oxidation coating treatment, and the AZ91D alloy coated for 50min revealed excellent corrosion resistance.

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

Effect of Processing Time on the Microarc Oxidation Coatings Produced on Magnesium AZ61 Alloy at Constant Hybrid Voltage

  • Ur Rehman, Zeeshan;Jeong, Yeong Seung;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.509-515
    • /
    • 2015
  • MAO ceramic coatings were prepared on AZ61 magnesium alloy for various processing times ranging from 5 to 60 min, in an electrolyte solution based on silicate-fluoride. The mechanical, electrochemical and, microstructural properties and the phase compositions of the coating layers were investigated. In this work, unlike previous studies, coatings with high amounts of the $Mag_2SiO_4$ phase were formed which contained small amounts of MgO and $MgF_2$ at a processing condition of 30 min. A microstructural analysis revealed that the porosity of the coatings was reduced considerably with an increase in the processing time, together with a change in the pore geometry from an irregular to a spherical shape. Potentiodynamic polarization and mechanical testing results showed that the coatings acquired after a processing time of 30 min were superior to all of the others.

Effects of Nitrate Electrolyte as the MAO process for Ceramic Coating treatments of AZ31 alloy (MAO법을 이용한 산화피막처리에서 질산염 전해액성분 첨가에 따른 AZ31합금의 표면코팅 특성)

  • Cho, Young-Hee;Jang, Kyong-Soo;Park, Sei-He;Lee, Ho-Jeong;Lee, Tae-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4365-4370
    • /
    • 2012
  • AZ31 Mg alloy were coated by Macro Arc Oxidation(MAO) with 3 types of electrolyte and various coating times at 4A/$cm^2$. The Surface morphology of coatings became lager pores and surface crack initiated as the coating time increased. The thickness and micro-hardness of coatings increased as the coating time increased. also. The phase of coatings on AZ31 alloy consisted of MgO, $Mg_2SiO_4$ and $MgAl_2O_4$ oxides. The salt spray corrosion resistance of coated AZ31 alloys revealed excellent corrosion resistance in 5% NaCl solution for 168hr.