• Title/Summary/Keyword: MgAlloy Sheet

Search Result 96, Processing Time 0.025 seconds

Improvement of R-value in Al-Mg-Si-Cu Alloy Sheets by Cross Rolling (크로스 압연에 의한 Al-Mg-Si-Cu 합금 판재의 소성변형비의 향상)

  • Lee, Kwang-jin;Jeon, Jae-yeol;Woo, Kee-do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.488-492
    • /
    • 2011
  • Heat-treatable Al-Mg-Si-Cu alloy sheets, which are expected to have a growing demand, were fabricated by Cross rolling to improve their formability. The mechanical properties and texture of the sheets after the final annealing process were investigated by a tensile test, EBSD and XRD analysis. The grain size of the cross-rolled sheets was remarkably decreased compared to conventional rolled sheets, and the R-value of the cross-rolled sheets was notably increased by about one and a half times that of the conventional rolled sheet. Cube{001}<100> and cubic system orientations were strongly developed in conventional rolled sheets. However, randomized textures were formed in the cross-rolled sheets without specific texture. It is thought that much shear deformation was induced during the cross rolling. The results show that the cross rolling method is effective for improving the R-value of aluminum alloys sheets and their grain refinement. As a result, it is considered that cross rolling is effective for improving formability.

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets (열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구)

  • Kim S. H.;Yim C. D.;You B. S.;Seo Y. M.;Chung I. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (II) - Mechanical Properties of laser-welded AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (II) - AZ31B-H24 및 AZ31B-O 레이저 용접부의 기계적 특성 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Magnesium alloy sheet which is commercially available in the market presently is AZ31B, a Mg-Al-Zn three elements alloy. AZ31B is used by being classified into AZ31B-H24 and AZ31B-O depending on temper designation. In this study, AZ31B-H24 and AZ31B-O alloy sheets with 1.25mm thickness were butt-welded using CW Nd:YAG laser. And the effect of materials on mechanical properties was investigated by tensile and hardness tests. As a result of this study, regardless of materials, the butt-welded joint did not show a significant difference in tensile strength and hardness values. However, compared with the basemetal, the AZ31B-O showed more outstanding mechanical properties than AZ31B-H24, and that is because H24 material lost the effect of work hardening during welding.

Experiments for Material Properties of Magnesium Metal Sheet at Elevated Temperatures (마그네슘 판재의 고온 물성치 실험)

  • Choi, E.K.;Lee, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.378-381
    • /
    • 2009
  • In this study, the repetitive loading-unloading tensile tests with AZ31B magnesium sheet metal have been conducted under various elevated temperatures to check out how the Young's moduli of the sheets evolve during the plastic deformation. The loading-unloading tests have been carried out at every 1% of strain increment. With the tested results, some damage parameters of magnesium sheets based on the Lemaitre's continuum damage theory could be calculated at room temperature, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$. It has been shown that the critical damage parameters obtained in all temperature conditions are within the range of 0.12 to 0.18.

  • PDF

The Study of Sheet Hydro-Mechanical Forming Process for Aluminum Alloy Sheets by Experiment and Finite Element Analysis (알루미늄 판재 적용 십자형 액압성형 공정의 해석 및 실험적 고찰)

  • Shin, Dong-Woo;Yoon, Young-Sik;Kim, Dong-Ok;Ryu, Yong-Mun;Han, Beom-Suck;Gang, Dae-Geon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1000-1009
    • /
    • 2008
  • Hydro-mechanical forming process has numerous advantages compared to those of a conventional deep drawing process such as an excellent surface quality and low costs of dies. In fact, Hydro-mechanical forming is a desirable forming process for producing complex parts in automotive body components, and it is an excellent candidate for the forming process of aluminum panels. In this research, Hydro-mechanical forming process with a cross shape punch has been studied for Al-Si-Mg alloy sheets. Finite element analysis by LS-Dyna has predicted the deep drawing depth of the aluminum sheets, and the experiment has confirmed that result. Put Abstract text here.

  • PDF

Estimation of Mechanical Properties of Mg Alloy at High Temperature by Tension and Compression Tests (인장 및 압축실험을 통한 마그네슘 합금의 고온 물성 평가)

  • Oh S. W.;Choo D. K.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.69-72
    • /
    • 2005
  • The crystal structure of magnesium is hexagonal close-packed (HCP), so its formability is poor at room temperature. But formability is improved in high temperature with increasing of the slip planes. Purpose of this paper is to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature is increased, yield${\cdot}$ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) are decreased. But strain rate sensitivity (m) is increased. As strain-rate increased, yield${\cdot}$ultimate strength, K-value, and work hardening exponent (n) are increased. Also, microstructures of grains fine away at high strain-rate. These results will be used in simulations and manufacturing factor for warm and hot forming process.

  • PDF

Plate Forging Process for Near-net Shaping of Mg-alloy Sheet (마그네슘합금 판재 정밀성형을 위한 판단조 공정 연구)

  • Song, Y.H.;Kim, S.J.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • Magnesium alloys are used in electronic devices such as laptops due to their lightweight features as well as vibration absorption and electromagnetic shielding properties. However, the precision of electronics is limited by the large number of small and precise ribs, the cost-effective manufacture of which requires appropriate technology. Plate forging is an efficient manufacturing process that can address these challenges. In this study, plate forging of magnesium alloys was investigated specifically for the fabrication of laptop cover. The plate forging process with back-pressure was used for near-net shape formation. Finite element analysis was used to select appropriate variables for back-pressure formation to generate ribs of various sizes and shapes without defects. The reliability of the analysis was verified to manufacture the prototype. The effect of back-pressure can be verified via fabrication of prototypes as well as structure and forming analysis based on finite element method. The process design factor of back-pressure increases formability without defects of under-filling and flow-through. Moreover, the tensile strength was maintained even after high temperature plate forging at 370 ℃, and the elongation was improved.

Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting (트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.