• 제목/요약/키워드: Mg-Zn-Y alloy

검색결과 239건 처리시간 0.03초

Zn-Mg 합금도금의 인산염처리에 있어 마그네슘의 영향성 (Effects of magnesium ion on phosphating of Zn-Mg alloy coated steel)

  • 민재규;손홍균;유영란;이재원;곽영진;김태엽;김규영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.264-264
    • /
    • 2012
  • Zn-Mg 합금도금의 인산염 처리시 산성의 인산염 용액에 의해 도금층으로부터 용출된 마그네슘이온은 인산염 결정 형성에 참여하고, 이로인해 미세하고 치밀한 인산염 피막이 형성되었다. 마그네슘을 포함함 치밀한 인산염 피막은 우수한 내식성을 보였다. 마그네슘이온의 영향성 파악을 위해 인산염 용액내 추가적으로 마그네슘 이온을 투입하였으며, 마그네슘 함량증가에 따라 인산염 피막의 내식성이 향상됨을 확인하였다.

  • PDF

CaO 첨가에 의한 AZ31 합금 미세조직의 열적 안정성 변화 (Change in Microstructural Stability of AZ31 Alloy By the Addition of CaO)

  • 전중환
    • 열처리공학회지
    • /
    • 제26권3호
    • /
    • pp.113-119
    • /
    • 2013
  • Grain growth behaviors of hot-rolled AZ31 (Mg-3%Al-1%Zn) and AZ31-0.3%CaO alloys at elevated temperatures have been investigated in order to clarify the effect of CaO addition on grain stability of Mg-Al-based wrought alloy. The grain size of CaO-free alloy increased steeply from 673 K with an increase in annealing temperature from 573 to 773 K, whereas the grains of CaO-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) were 12.2 and 18.3 kJ/mole between 573 and 673 K and 119.2 and 126.9 kJ/mole between 673 and 773 K in the AZ31 and AZ31-0.3%CaO alloys, respectively. This result indicates that grains in the CaO-added alloy possess higher thermal stability than CaO-free alloy. SEM observations on the annealed alloy samples revealed that higher grain stability resulting from CaO addition would be associated with the suppression of grain growth by Ca-related precipitate particles distributed in the microstructure.

CuZn36 합금의 입자 미세화에 미치는 Zr, B, P 첨가의 영향 (Effects of Zr, B and P Additions the Grain Refinement of CuZn36 Alloys.)

  • 김정근;이동우
    • 한국주조공학회지
    • /
    • 제13권2호
    • /
    • pp.168-174
    • /
    • 1993
  • It has been known that the grain refinement of Cu base alloys greatly improved mechanical properties, castability, workability and hot shortness resistance etc. In this study CuZr50, CuP7, CuFe7, CuMg10 binary alloys were added as grain refiners in CuZn36 alloy. The alloys melted in vacuum and controlled in mixed gas conditions and casted at $1050^{\circ}C$. Zr-P-X compound has significantly grain refined but oxygen has been found detrimental to grain refinement. In the case of Zr /B ratio below 4, B acted as grain growth element in this alloy.

  • PDF

주조용 AZ91-2%Ca 마그네슘 합금의 부식 거동에 미치는 용체화처리의 영향 (Effect of Solution Treatment on Corrosion Behavior of AZ91-2%Ca Magnesium Casting Alloy)

  • 문정현;전중환
    • 열처리공학회지
    • /
    • 제28권4호
    • /
    • pp.190-199
    • /
    • 2015
  • The study is intended to investigate the effect of solution treatment on microstructure and corrosion behavior of AZ91(Mg-9%Al-1%Zn-0.3%Mn)-2%Ca casting alloy. In as-cast state, the AZ91-2%Ca alloy consisted of intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_8Mn_5$ and $Al_2Ca$ phases in ${\alpha}-(Mg)$ matrix. After the solution treatment, Al within the ${\alpha}-(Mg)$ matrix was distributed more homogeneously, along with the slight decrease in the total amount of intermetallic compounds. The corrosion resistance of the AZ91-2%Ca alloy was improved after the solution treatment. The microstructural examinations for the solution-treated samples revealed that the better corrosion resistance may well be related to the incorporation of more oxides and hydroxides such as $Al_2O_3$, $Al(OH)_3$, CaO and $Ca(OH)_2$ into the surface corrosion product without dissolution of the intermetallic phases along the grain boundaries.

용탕가압침투법에 의한 알루미늄 보레이트 강화 Mg-3Al-2Ag-1Zn 금속복합재료의 물성 (Material Properties of Squeeze Infiltrated Al Borate Whisker Reinforced Mg-3A1-2Ag-1Zn Matrix Composites)

  • 강호준;배건희;박용하;한상호;박용호;조경목;박익민
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.791-795
    • /
    • 2005
  • In this study, aluminum borate whisker reinforced Mg-3Al-2Ag-1Zn matrix composites were fabricated by the squeeze infiltration technique. The purpose is to develop materials for elevated temperature applications. Microstructure observation revealed successful fabrication of the metal matrix composites, namely no cast defects such as porosity and matrix/reinforcement interface delamination etc. High temperature hardness and creep rupture properties were improved significantly with addition of Ag to the Al borate whisker reinforced Mg alloy composite. $Mg_3Ag$ phase formed during aging heat treatment could improve creep properties of the Mg matrix composites.

Influence of Annealing Temperatures on Corrosion Resistance of Magnesium Thin Film-Coated Electrogalvanized Steel

  • Lee, Myeong-Hoon;Lee, Seung-Hyo;Jeong, Jae-In;Kwak, Young-Jin;Kim, Tae-Yeob;Kim, Yeon-Won
    • 한국표면공학회지
    • /
    • 제46권3호
    • /
    • pp.116-119
    • /
    • 2013
  • To improve the corrosion resistance of an electrogalvanized steel sheet, we deposited magnesium film on it using a vacuum evaporation method and annealed the films at $250-330^{\circ}C$. The zinc-magnesium alloy is consequently formed by diffusion of magnesium into the zinc coating. From the anodic polarization test in 3% NaCl solution, the films annealed at $270-310^{\circ}C$ showed better corrosion resistance than others. In X-ray diffraction analysis, $ZnMg_2$ was detected through out the temperature range, whereas $Mg_2Zn_{11}$ and $FeZn_{13}$ were detected only in the film annealed at $310^{\circ}C$. The depth composition profile showed that the compositions of Mg at $270-290^{\circ}C$ are evenly and deeply distributed in the film surface layer. These results demonstrate that $270-290^{\circ}C$ is a proper temperature range to produce a layer of $MgZn_2$ intermetallic compound to act as a homogeneous passive layer.

알칼리 용액에서 알루미늄의 부식속도 측정 (Measurement of the Corrosion Rate of Aluminum in Alkaline Solution)

  • 심은기;황영기;전혜수
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.117-122
    • /
    • 1999
  • 본 연구에서는 알칼리 용액에서 알루미늄의 부식속도를 측정하면서, 합금원소, 알칼리도(KOH농도),용액온도, 그리고 용액에 첨가하는 부식 억제제의 종류와 그 농도 등이 미치는 영향에 대해 조사하였다. 알루미늄 제품에 따라서는 순도 $99\%$ 이상인 AA-1050의 부식속도가 가장 낮은 반면에 Mg나 Mn이 포함된 합금은 상대적으로 높게 측정되었다. KOH 수용액에 ZnO를 포화농도로 첨가하면 부식속도가 $50\%$ 이상 억제되는 효과가 나타났지만. ZnAc는 부식 억제제로서 역할하지 못하였다. 알칼리도와 용액온도가 높을수록 ZnO의 부식 억제효과는 상승하였다 부식속도는 KOH농도에 대해 1차 선형 증가함수 그리고 온도 역수에 대해 지수형 감소함수로 나타났다. SEM과 EDS를 사용하여 부식 표면에 부착된 물질의 성분을 분석하였으며, XRD의 기기분석을 통하여 KOH 용액에서의 알루미늄의 부식 생성물이 $Al(OH)_3$임을 확인하였다.

Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성 (Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

A Study on ZnSSe : Te/ZnMgSSe DH Structure Blue and Green Light Emitting Diodes

  • Lee Hong-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.795-800
    • /
    • 2005
  • The optical properties of $ZnS_{y}Se_{1-x-y}:Te_x\;(x\;<\;0.08,\;y\∼0.11$) alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_{1}$Tel and $Te_{n}$ (n$\geq$2) cluster bound excitons, respectively. Bright blue (462 nm) and green (535 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer.

분무 Al-Zn-Mg 합금의 기계적 성질 및 미세조직에 미치는 Ag 첨가의 영향 (A Study on the Effects of Ag Addition on the Mechanical Properties and Microstructure in Atomized Al-Zn-Mg Alloys)

  • 신희상;정태호;남태운
    • 한국주조공학회지
    • /
    • 제19권6호
    • /
    • pp.456-465
    • /
    • 1999
  • The overall objective of this study is to investigate the effect of Ag addition on the mechanical properties and microstructure of rapid solidified 7000 Al series alloys. Al-Zn-Mg-Cu alloys with small amounts of Ag was fabricated into the powder by gas atomization. The powder was extruded after the cold compaction and degassing and then followed by T6 heat treatment. Microstructure observation, phase analysis, room and high temperature tensile test and hardness test were pursued. The tensile strength and hardness of Ag-added alloy after heat treatment was increased with increasing Ag contents. However, the elongation of extruded alloys was not increased as much as to be expected. The reason of this result seems to be related to $the{\Omega}$ phase, which contribute to the high temperature strength stability of Al-Cu-Zn alloys through the formation of eutectoid with Ag addition.

  • PDF