• Title/Summary/Keyword: Mg-Zn alloys

Search Result 176, Processing Time 0.034 seconds

Microstructural Characterization of Hot Extruded Al-Zn-Mg-Cu Alloys Containing Sc (Sc을 첨가한 Al-Zn-Mg-Cu 합금 압출재의 열처리에 따른 미세구조 변화)

  • 이혜경;서동우;이상용;이경환;임수근
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • The microstructural changes of Al-Zn-Mg-Cu alloy containing Sc during hot extrusion and post heat treatment were investigated. Two kinds of Al-Sc alloys with different alloying elements (B1, B2) were hot extruded to make T-shape bars at extrusion temperature of $380^{\circ}C$, then the bars were solution treated at $480^{\circ}C$ for 2hrs followed by artificial aging at $120^{\circ}C$ for 24hrs. The interior microstructure of as extruded bar consisted of elongated grains, however, fine equiaxed grains were also observed around surface. The microstructural gradient suggested that different restoration process could proceed during the hot extrusion. For B1 and B2, different grain growth behaviors were found around the surface during the post heat treatment. Rapid grain growth behavior was observed for B1 around the surface, however, it was not observed for B2. Orientation pinning, which was related with the evolution of preferred orientation, and precipitation were thought to be responsible for the rapid grain growth.

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

Spectral Analyses of Plasma Induced by Laser Welding of Aluminum Alloys (알루미늄 합금의 레이저 용접시 유기하는 플라즈마의 스펙트럼 분석)

  • 김종도;최영국;김영식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.292-300
    • /
    • 2001
  • The paper describes spectroscopic characteristics of plasma induces in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg lines, as well as the intense molecular spectra of A10 and Mg0 formed by chemical reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere, Mg0 and AI0 spectra vanished, but AIH spectrum was detected. The hydrogen source was presumably hydrogen dissolved in the base metals, water absorbed on the surface oxide layer, or $H_2$ and $H_2O$ in the shielding gas. The resonant 1ines of Al and Mg were strongly self-absorbed, in particular, self-absorption of the Mg 1ine was predominant. These results show that the laser induced plasma was made of metal1ic vapor with relatively low temperature and high density.

  • PDF

The Solution Treatment on Thixo-extrudates of Semi-solid Al-Zn-Mg Alloy (Al-Zn-Mg 반용융 압출재의 용체화처리)

  • Kim, Dae-Hwan;Kim, Hee-Kyung;Eom, Jeong-Pil;Lim, Su-Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2013
  • In the present study, the microstructure and solution treatment response of Al-Zn-Mg alloys bars by thixo-extrusion was investigated. The alloy bars were solution treated at 400, 430, 460 and $490^{\circ}C$ for various times. In order to examine the microstructures and phase analysis of the samples after solution treatment, it was performed by optical and scanning electron microscopy. And, Vickers hardness and electrical conductivity was measured on the solution treated samples for each condition to investigate the solution treatment response of extruded bars during solution treatment. The results show that the optimum solution heat treatment conditions of thixo-extruded Al-Zn-Mg alloy for minimization of the grain growth and degradation promotion of the second phase is a temperature of $460^{\circ}C$ and holding time of 0.5 to 2 h.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Investigation on the Sintering Behavior of P/M Al-Zn-Mg-Cu Alloy

  • Shahmohammadi, M.;Simchi, A.;Danninger, H.;Arvand, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.536-537
    • /
    • 2006
  • In the present work, the sintering behavior of high strength Al-5.6Zn-2.5Mg-1.6Cu (in wt.%) alloy compacts prepared from elemental powders was investigated. Microstructural evaluation was accompanied by XRD and DSC methods in order to determine the temperature and chemical composition of the liquid phases formed during sintering. It was found that three transient liquid phases are formed at 420, 439 and 450 $^{\circ}C$. Microstructural study revealed the progressive formation of sintered contacts due to the presence of the liquid phases, although the green compact expands as a result of the melt penetration along the grain boundaries. While Zn melts at ${\sim}420\;^{\circ}C$, the intermetallic phases formed between Al and Mg were found to be responsible for the formation of liquid phase and the dimensional change at higher temperatures.

  • PDF

Fabrication and Dynamic Consolidation Behaviors of Rapidly Solidified Mg Alloy Powders (급속응고 Mg 합금분말의 제조 및 동적성형특성)

  • Chae, Hong-Jun;Kim, Young-Do;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.340-346
    • /
    • 2011
  • In order to improve the weak mechanical properties of cast Mg alloys, Mg-$Zn_1Y_2$ (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 ${\mu}m$ in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.

Characterization of Solidification and Microstructure of an Al-Zn-Mg-Si Alloy

  • He Tian;Dongdong Qu;Zherui Tong;Nega Setargew;Daniel J. Parker;David StJohn;Kazuhiro Nogita
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-112
    • /
    • 2024
  • Al-Zn-Mg-Si alloy coatings have been developed to inhibit corrosion of cold rolled steel sheets, and an understanding of the alloy system helps prevent coating defects. We used a Bridgman furnace to characterise the nature and formation mechanisms of the phases present in the quaternary system with 0.4 wt% Fe. In the directional solidification experiments we imposed steep temperature gradients and varied the pull rate. After the samples were quenched in the furnace, detailed characterization of the samples was carried out by electron microscopy (SEM/EDS). From the dT/dt vs T plots of the cooling curves of the alloys, the solidification path was determined to be $Liquid{\longrightarrow[80]^{544-558}}{\alpha}-Al{\longrightarrow[80]^{453-459}}Al/Mg_2Si{\longrightarrow[80]^{371-374}}Al/Zn{\longrightarrow[80]^{331-333}}Zn/mgZn_2$. The formation mechanisms of the Mg and Zn containing phases and their morphology was discussed together with the effects of the cooling rate. Key findings include the lengthening of the mushy zone in directionally solidified samples remelted against a positive temperature gradient, as well as an enrichening of the α-Al phase by Zn through remelting. Mg2Si and other Si based phases were observed to adopt a much finer faceted microstructure in favour of a script-like microstructure when exposed to the higher cooling rate of coolant quenching.

Microstructures and Mechanical Properties of AZ31-(0~0.5%)Ca alloys (AZ31-(0~0.5)%Ca 합금의 미세조직과 기계적 성질)

  • Jun, Joong-Hwan;Park, Bong-Koo;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.299-304
    • /
    • 2004
  • Influence of Ca addition on microstructure and room temperature mechanical properties has been studied for AZ31(Mg-3%Al-1%Zn-0.2%Mn)-(0~0.5)%Ca wrought alloys, based on experimental results from metallography, X-ray diffractometry and mechanical tests. Yield strength, ultimate tensile strength and hardness of the alloys increased remarkably with increasing Ca content, whereas elongation was deteriorated continuously. Microstructural examination revealed that Ca addition efficiently refined grains of ${\alpha}$(Mg) phase and that some of the Ca dissolved in ${\beta}(Mg_{17}Al_{12})$ precipitates. The former and the latter facts are thought to be responsible for improved strength and loss of ductility of the AZ31+Ca wrought alloys, respectively.

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF