• Title/Summary/Keyword: Mg-Ti-Ni

Search Result 181, Processing Time 0.027 seconds

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

A Study on PIXE Spectrum Analysis for the Determination of Elemental Contents (원소별 함량결정을 위한 PIXE 스펙트럼 분석에 관한 연구)

  • Jong-Seok OH;;Hae-ILL Bak
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 1990
  • The PIXE (Proton Induced X-ray Emission) method is applied to the quantitative analysis of trace elements in tap water, red wine, urine and old black powder samples. Sample irradiations are performed with a 1.202 MeV proton beam from the SNU 1.5-MV Tandem Van de Graaff accelerator, and measurements of X-ray spectra are made by the Si(Li) spectrometer To increase the sensitivity of analysis tap water is preconcentrated by evaporation method. As an internal standard, Ni powder is mixed with black powder sample and yttrium solution is added to the other samples. The analyses of the PIXE spectra are carried out by using the AXIL (Analytical X-ray Analysis by Iterative Least-squares) computer code, in which the routine for least-squares method is based on the Marquardt algorithm. The elements such as Mg, Al, Si, Ti, Fe and Zn are analyzed at sub-ppm levels in the tap water sample. In the red wine sample prepared without preconcentration. the element Ti is detected in the amount of 3ppm. In conclusion, the PIXE method is proved to be appropriate for the analysis of liquid samples by relative measurements using the internal standard. and is expected to be improved by the use of evaluated X-ray production cross-sections and the development of sample preparation techniques.

  • PDF

Microwave dielectric properties of Forsterite based Ceramics (포스테라이트계 유전체의 마이크로파 유전특성)

  • Kim, Dong-Young;Lee, Hong-Yeol;Jun, Dong-Suk;Lee, Sang-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.279-282
    • /
    • 2003
  • For the millimeter-wave dielectrics, Forsterite-based ceramics were produced. Pure forsterite ceramics($Mg_2SiO_4$) shows porous micro-structure and very low Q*f values, which is not suitable for the dielectrics for the millimeter-wave band. Several sintering aids including $Al_2O_3$, $Li_2CO_3$, $Li_2SiO_4$, were added to the forsterite ceramics in order to produce dense low-loss dielectrics. Among these additives, $Li_2CO_3$ is the most effective sintering aids. Several sub-components including NiO, ZnO, $SnO_2$, $TiO_2$, were added to enhance the microwave dielectric properties. $TiO_2$ is the most effective additive to enhance the dielectric properties at microwave bands. The simultaneous addition of $TiO_2$ and $Li_2CO_3$ increases Q*f value over 170,000, which can be used as dielectrics in millimeter-wave bands.

  • PDF

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.

Petrology of the Basalts in the Seongsan-Ilchulbong area, Jeju Island (제주도 성산일출봉 일대 현무암에 대한 암석학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Jeong, Eun-Ju
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.324-342
    • /
    • 2007
  • This study reports petrography and geochemical characteristics of the basalt lava flows in Seongsan-Ilchulbong area, the easternpart of Jeju island, Korea, to understand the evolutionary processes of magma. Basalt lavas are classified into the Pyoseon-ri basalt and the Seongsan-ri basalt. The Pyoseon-ri basalt is dark-gray colored with many vescicles, and mainly consists of olivine, feldspar and rarely of clinopyroxene as phenocrysts. The Seongsan-ri basalt is largely aphanitic basalt and bright-gray colored, divided into two lava-flow units: lower lava flow (B1) and upper lava flow (B2) by the intercalated yellowish lapillistone and paleosol. The lavas plotted into sub-alkaline tholeiitic basalt and alkaline basalt series. The tholeiitic basalts have characteristically higher $SiO_2,\;FeO^T$, and CaO contents, but lower $TiO_2,\;K_2O,\;P_2O_5$ and other incompatible elements compared to the alkali basalts. The tholeiitic basalts have higher $SiO_2$ to the same MgO contents than the alkalic basalts. The contents of Ni, Cr, and MgO show a strong positive correlation, which indicates that low-MgO phases like plagioclase and titanomagnetite were important during the differentiation of magma. The contents of incompatible elements against that of Th show a strong positive correlation. The chondrite-nomalized REE patterns of tholeiitic and alkalic basalts are subparallel each other. LREEs contents of the former are lower than, but HREEs contents are similar to the latter. They both are similar to their K/Ba ratios. The primitive-mantle normalized spider diagram demonstrates that the contents of Ba and Th of all basaltic magma are enriched, and yet Cr, Ni are depleted. The tholeiitic and alkalic basalts may be originated from a different degree of the partial melting of the same mantle material source, and one shows a higher degree of the partial melting than the other.

Preparation of $LaAlO_3$ thin Films by Sol-gel Method (Sol-gel 방법에 의한 $LaAlO_3$ 박막의 제조)

  • Kim, H.J.;Kim, B.J.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • Lanthanum aluminate($LaAlO_3$) film has been prepared on single crystal and metal substrates by dip coating method. Lanthanum acetate and aluminum were prepared via ligand exchange starting from lanthanum nitrate hexahydrate and aluminum nitrate hexahydrate in acetate glacial acetic acid solution after being refluxed. Coating solution was obtained by diluting the gel with methanol and 2-methoxyethanol to adjust the total cation concentration to 0.67 M. Precursor coated film was prepared by dip-coating with a speed of 25 mm/min on various substrates such as $LaAlO_3$ (001), MgO(001), $SrTiO_3$(001) single crystal, LMO/MgO/Ni-alloy. Thin films have been obtained by heat treating the precursor film at various temperatures from $600^{\circ}C{\sim}900^{\circ}C$ and various heating rate from $0.83^{\circ}C/min{\sim}1.25^{\circ}C/min$ under $Ar/O_2$ mixture containing 1000ppm oxygen. The films have been characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). XRD analysis for the prepared film showed that $LaAlO_3$ thin films with a preferred orientation of (100) plane parallel to substrate surface were obtained at $800^{\circ}C(1.11\;^{\circ}C/min)$ on LMO/MgO/Ni-alloy substrate, but the intensity decreased with the increase of heat treatment temperature.

  • PDF

Banded Iron Formations in Congo: A Review

  • Yarse Brodivier Mavoungou;Anthony Temidayo Bolarinwa;Noel Watha-Ndoudy;Georges Muhindo Kasay
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.745-764
    • /
    • 2023
  • In the Republic of Congo, Banded iron formations (BIFs) occur in two areas: the Chaillu Massif and the Ivindo Basement Complex, which are segments of the Archean Congo craton outcropping in the northwestern and southwestern parts of the country. They show interesting potential with significant mineral resources reaching 2 Bt and grades up to 60% Fe. BIFs consist mostly of oxide-rich facies (hematite/magnetite), but carbonate-rich facies are also highlighted. They are found across the country within the similar geological sequences composed of amphibolites, gneisses and greenschists. The Post-Archean Australian Shale (PAAS)-normalized patterns of BIFs show enrichment in elements such as SiO2, Fe2O3, CaO, P2O5, Cr, Cu, Zn, Nb, Hf, U and depletion in TiO2, Al2O3, MgO, Na2O, K2O, Sc, Th, Ba, Zr, Rb, Ni, V. REE diagrams show slight light REEs (rare earth elements; LREEs) compared to heavy REEs (HREEs), and positive La and Eu anomalies. The lithological associations, as well as the very high (Eu/Eu*)SN ratios> 1.8 shown by the BIFs, suggest that they are related to Algoma-type BIFs. The positive correlations between Zr and TiO2, Al2O3, Hf suggest that the contamination comes mainly from felsic rocks, while the absence of correlations between MgO and Cr, Ni argues for negligeable contributions from mafic sources. Pr/Pr* vs. Ce/Ce* diagram indicates that the Congolese BIFs were formed in basins with redox heterogeneity, which varies from suboxic to anoxic and from oxic to anoxic conditions. They were formed through hydrothermal vents in the seawater, with relatively low proportions of detrital inputs derived from igneous sources through continental weathering. Some Congolese BIFs show high contents in Cr, Ni and Cu, which suggest that iron (Fe) and silicon (Si) have been leached through hydrothermal processes associated with submarine volcanism. We discussed their tectonic setting and depositional environment and proposed that they were deposited in extensional back-arc basins, which also recorded hydrothermal vent fluids.

Fractionation of Heavy Metals by Early Diagenesis in Deep-sea core Sediments from the Korea Deep-sea Environmental Study (KODES) area, NE Equatorial Pacific (한국심해환경연구(KODES) 지역 표층 퇴적물 중 속성작용에 의한 금속의 분화)

  • Park, Sung-Hyun;Jung, Hoi-Soo;Park, Chan-Young;Lee, Kyeong-Yong;Kim, Ki-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.215-225
    • /
    • 1999
  • To study the vertical variations of major elements, trace elements and rare earth elements(REEs) contents in deep-sea sediments, six cores from Korea Deep-sea Environmental Study area(KODES) were analyzed. Topmost sediment layers of KODES area are divided into two Units; brown-colored and peneliquid Unit I and pale brown-colored and relatively solidified Unit II. Contents of major elements, REEs, Cu, Sr and Rb in each Unit are almost same, while contents of Mn, Ni and Co in Unit I are two or three times higher than those in Unit II. R-mode factor analysis represents that surface sediments are composed of alumino-silicate phase (AI-Ti-K-Mg-Fe-Rb-Ce), apatite phase (Ca-P-Cu-Sr-Trivalent Rare Earth Elements) and Mn-oxide phase(Mn-Ni-Co). Factor scores in silicate and apatite phases in each Unit are nearly same, whereas those in Mn-oxide phase in Unit I is higher than those in Unit II. While NilCu ratio in Unit I is two times higher than that in Unit II. We interprete the geochemical fractionation of Ni and Cu as a result that Ni can be remobilized in oxygen-depleted micro-environment in Units I and II and then easily reprecipitated in Unit I, while most of Cu supplied together with organic material is decomposed mostly in Unit I and sorbed into apatite.

  • PDF

Pattern Classification of PM -10 in the Indoor Environment Using Disjoint Principal Component Analysis (분산주성분 분석을 이용한 실내환경 중 PM-10 오염의 패턴분류)

  • 남보현;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2002
  • The purpose of the study was to survey the distribution patterns of inorganic elements of PM-10 in the various indoor environments and analyze the pollution patterns of aerosol in various places of indoor environment using a pattern recognition method based on cluster analysis and disjoint principal component analysis. A total of 40 samples in the indoor had been collected using mini-vol portable samplers. These samples were analyzed for their 19 bulk inorganic compounds such as B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, and Pb by using an ICP-MS. By applying a disjoint principal component analysis, four patterns of the indoor air pollutions were distinguished. The first pattern was identified as a group with high concentrations of PM-10, Na, Mg, and Ca. The second pattern was identified as a group with high concentrations B, Mg, At, Ca, Fe, Cu, and Ba. The third pattern was a group of sites with high concentrations of K, Zn. Cd. The fourth pattern was a group with low concentrations PM-10 and all inorganic elements. This methodology was found to be helpful enough to set the criteria standard of indoor air quality, corresponding pollutants, and classification of indoor environment categories when making an indoor air quality law.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF