• Title/Summary/Keyword: Mg-Al alloy

Search Result 628, Processing Time 0.027 seconds

Investigations on electron beam weldability of AlZnMgCu0.5 alloys (AlZnMgCu0.5 합금의 Electron Beam 용접성에 관한 연구)

  • 배석천
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.166-177
    • /
    • 1997
  • The high strength AlZnMgCu0.5 alloy is a light metal with good age hardenability, and has a high tensile and yielding strength. Therefore, it can be used for structures requiring high speciple strength. Even though high strength AlZnMgCu alloy has good mechanical properties, it has a lot of problems in TIG and MIG welding processes. Since lots of high heat absorption is introduced into the weldment during TIG and MIG processes, the microstructural variation and hot cracks take place in heat affected zone. Therefore, the mechanical properties of high strength AlZnMgCu0.5 alloy can be degraded in weldment and heat affected zone. Welding process utilizing high density heat source such as electron beam should be developed to reduce pore and hot cracking, whichare usually accompanied by MIG and TIG welding processes. In this work, electron beam welding process were used with or without AlMg4.5Mn as filler material to avoid the degradation of mechanical properties. Mechanical and metallurgical characteristics were also studied in electron beam weldment and heat affected zone. Moreover hot cracking mechanism was also investigated.

  • PDF

The Evaluation of Diffusivity of Lithium for Coarsening of δ' Precipitate in AI-Li-Cu-Mg-Zr Alloy (Al-Li-Cu-Mg-Zr 합금에 있어서 δ'상 조대화를 위한 Lithium의 확산계수 평가)

  • Chung, D.S.;Kim, E.S.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • The evaluation and analysis of diffusivity of lithium for coarsening and coarsening kinetics of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy aged at $170^{\circ}C$ have been investigated by transmission electron microscopy. With ageing time, ${\delta}^{\prime}$ precipitate coaesened to followed $\bar{\gamma}{\propto}t^{1/3}$ and coarsening kinetics was found to be obeyed to the Lifshitz-Slyozov-Wagner(LSW) theory and diffusivity of lithium for coarsening of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy was obtained to be $5.85{\times}10^{-17}{\sim}1.53{\times}10^{-16}$ by experimental coarsening rate constant and various coarsening kinetic theory. Diffusivity of lithium measured by using various model but MLSW and Tsumuraya (VI) et al. model in Al-Li-Cu-Mg-Zr alloy is similar to that calculated by the Costas's diffusivity equation. It was, therefore, suggested that additing to the Cu, Mg and Zr element in Al-Li system have no great effect on diiffusivity of lithium for coarsening of ${\delta}^{\prime}$ This suggest that in matrix.

  • PDF

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy (중간가공열처리한 AI-Li계 합금의 고온변형거동)

  • Yoo, C.Y.;Jin, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall (나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구)

  • Ha, San;Kim, Am-Kee;Lee, Chang-Hun;Lee, Hak-Joo;Ko, Soon-Gyu;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF

Effects of Grain Size on High Temperature Deformation Behavior of Sc added Al-Mg Alloy (Sc첨가한 Al-Mg 합금의 고온변형 거동에 미치는 결정립 크기의 영향)

  • Woo, K.D.;Kim, S.W.;Kim, H.S.;Yang, C.H.;Park, H.C.;MIURA, Y.;Park, K.T.
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.701-705
    • /
    • 2002
  • High temperature tensile test has been performed at $450^{\circ}C$ at different strain rate with various grain size due to different reduction rate of Al-4wt%Mg-0.4wt%Sc alloy which is known to be one of useful superplastic alloys. The grain size of Al-4wt%Mg-0.4wt%Sc alloy is $67~100\mu\textrm{m}$ which is courser than that of the alloy which is commonly used as the superplastic material. The total elongation of the Al-4wt%Mg-0.4wt%Sc alloy is strongly dependent on the average grain size, and is a linear function of the inverse average grain size for the present alloy.

Variation of Morphology of Solid Particles and Microstructure in Al-Si, Al-Cu and Mg-Al Alloys During Isothermal Heat-Treatment at Semi-Solid Temperatures (반고상 온도구역에서 등온유지한 Al-Si, Al-Cu 및 Mg-Al합금의 고상형상 및 조직의 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.556-564
    • /
    • 1996
  • Variation of shape and size of solid particles and solute redistribution in Mg-9wt.%Al, AI-4.5wt.% Cu, and AI-7wt.%Si alloys were investigated when they were heated to semi-solid temperatures and held without stirring. In the case of Mg-9wt.% Al and Al-4.5wt.%Cu alloys, the polygonal shaped solid particles were agglomerated with non-uniform distribution, and there were no disappearance of the solid/solid boundary until the end of melting. But in the case of an Al-7wt.%Si alloys, two or three spherical shaped particles were coalesced or separated individually, and the coalesced particles had no solid/solid interface on the contrary to the prevous case. The maximum size of solid particles during isothermal heating at high temperature was smaller than that at lower temperature, but the time required to reach the maximum size at high temperature was shorter than that at lower temperature. The concentrations of main solute atom whose distribution coefficient is lower than 1, decreased in the primary solid particles as the liquid fraction increased, and the gradient of solute concentration was steeper in Mg-9wt.%Al alloy and Al-4.5wt.%Cu alloy than that of Al-7wt.%Si alloy.

  • PDF

DISSIMILAR FRICTION-STIR WELDING OF ALALLOY 1050 AND MGALLOY AZ31

  • Park, Seung Hwan C.;Masato Michiuchi;Yutaka S. Sato;Hiroyuki Kokawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.534-538
    • /
    • 2002
  • Dissimilar friction stir welding of aluminum (AI) alloy 1050 and magnesium (Mg) alloy AZ31 was successfully done in the limited welding parameters. The dissimilar weld showed good quality and facility compared to conventional fusion weld. Transverse cross section perpendicular to the welding direction had no defects. The weld was divided into base material of Al alloy, an irregular shaped stir zone and base material of Mg alloy. The irregular shaped stir zone was roughly located around the initial weld center. The weld interface near plate surface shifted from initial weld centerline to the advancing side. Hardness profile of the weld was heterogeneous, and the hardness value of the stir zone was raised to about 150 Hv to 250 Hv. The mixed phase was identified to intermetallic compound $Mg_{17}$Al$_{12}$ using x-ray diffraction method, energy dispersive x-ray spectroscopy (EDX) and electron probe micro analysis (EPMA). The formation of intermetallic compound $Mg_{17}$Al$_{12}$ during FSW causes the remarkable increase in hardness value in the stir zone.one.

  • PDF

Plastic Deformation Behavior of Al-Mg-Si Alloys at the Elevated Temperatures (Al-Mg-Si 합금의 고온 소성 변형 거동)

  • 권용남;이영선;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Thermomechanical behavior of Al-Mg-Si alloys was studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests were carried out to get the information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys carried out and analyzed by the comparison with the compression tests. Microstructural features after forging were discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains were found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

Age Hardening and Microstructure in Rapidly Solidified Mg-Al-Si-xCa Alloys (급냉응고된 Mg-Al-Si-xCa 합금의 시효경화 및 미세조직)

  • Kim, Wan-Chul;Park, Ji-Ha;You, Bong-Sun;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.433-439
    • /
    • 1999
  • Rapidly solidified Mg-Al-Si base alloys containing Ca were obtained by melt spinning. The melt-spun ribbons were aged isochronally or isothermally to investigate age hardening phenomena and microstructural change according to the alloy composition. Age hardening occurred after aging at $200^{\circ}C$ for 1h mainly due to the precipitation of $Al_2Ca$ and $Mg_2Ca$, which have coherent interfaces with the matrix. With the increase of Ca content, the hardness values of the alloy ribbons were increased. Among the alloys, Mg-10Al-2 Si-3Ca alloy showed a good thermal stability at elevated temperature.

  • PDF