• Title/Summary/Keyword: Mg solid solution

Search Result 207, Processing Time 0.02 seconds

Plant Regeneration from Protoplasts of Suspension Cultured Cells in Arabidopsis thaliana (애기장대(Arabidopsis thaliana) 현탁배양세포의 원형질체로부터 식물체 재분화)

  • 김명덕;김준철;진창덕;임창진;한태진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Protoplasts of Arabidopsis thaliana were easily isolated from the shoot-forming (SF) suspension-cultured cell clusters with 4 hours-shaking condition (40 rpm) on CPD enzyme solution containing 1% cellulase R-10, 0.25% pectolyase Y-23 and 0.5% driselase. Protoplasts were cultured on liquid KAO medium supplemented with 1 mg/L 2,4-D, 0.5 mg/L kinetin, 200 mg/L spermidine and 68 g/L glucose. Also, protoplasts were cultured on 0.2 $\mu$M membrane filter placed onto CP solid medium containing the suspension cells as feeder cells in the dark at $25^{\circ}C$ for 4 weeks. Protoplast-derived-SF calli were cultured on MS medium containing 0.05 mg/L IAA, 7 mg/L 2 ip and 30 g/L sucrose under the continuous illumination for four weeks. The frequency of shoot formation was about 60%. The regenerants were transferred into potting soil to grow mature plants. The regenerants formed the silques with seeds after 8 weeks of cultures.

  • PDF

Synthesis and Characterization of V2O - Doped Karrooite Brown Pigments (V2O5가 고용된 Karrooite계의 Brown색 안료합성과 특성)

  • Kim, Gum-Sun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.303-306
    • /
    • 2011
  • [ $V_2O_5$ ]doped Karrooite pigments were synthesized by the solid state method to get stabilized brown pigment in oxidation and reduction atmosphere. Optimum substitution condition and limited dopant with $V_2O_5$ for Karrooite pigment was investigated. With calcination at $1250^{\circ}C{\sim}1400^{\circ}C$, compositions were designed varying $V_2O_5$ molar ratio by increasing 0.02mole to the formula $Mg_1-xTi_2-xM_{2x}O_5$(x = 0.01~0.09 mole). Synthesized pigments were analyzed by XRD, Raman spectroscopy and UV-vis. When $V_2O_5$ was doped from 0.01 to 0.05 mole, single phase of Karrooite was observed at temperature $1300^{\circ}C$ and soaking time 4h by Raman spectroscopy. However, it was found that excess $VO_2$ peak appeared with 0.07 and 0.09 mole of $V_2O_5$ doped to $MgTi_2O_5$. This result indicated that the maximum limit of solid solution is 0.05 mole $V_2O_5$. Karrooite pigments were applied as a ceramic pigment to achieve brown colors in lime magnesia glaze and lime barium graze at both of oxidation and reduction atmosphere. CIE color coordinates are $L^*$ = 40.34, $a^*$ = 9.94, $b^*$ = 21.40 in lime magnesia glaze.

Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process (초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가)

  • Park, Jae-Hyun;Chi, Sang-Cheol;Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.

Microwave Dielectric Properties of (Sr$_{1-x}$Bax)(Mg$_{1/3}$Nb$_{2/3}$)O$_3$ with SrWO$_4$ addition (SrWO$_4$가 첨가된 (Sr$_{1-x}$Bax)(Mg$_{1/3}$Nb$_{2/3}$)O$_3$의 마이크로파 유전특성)

  • Heo, Hoon;Park, Chan-Sik;Kim, Kyoung-Young;Byun, Jae-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.325-331
    • /
    • 1999
  • SrWO4가 첨가된 (Sr1-xBax)(Mg1/3Nb2/3)O3의 마이크로파 유전특성에 관하여 조사하였다. 관찰된 조성영역에서 Sr(Mg1/3Nb2/3)O3과 Ba(Mg1/3Nb2/3)O3은 (Sr1-xBax)(Mg1/3Nb2/3)O3고용체를 형성하고 SrWO4의 첨가는 고용체의 소결성을 향상시켜 소결온도 155$0^{\circ}C$에서 상대밀도 97% 이상을 얻었다. 소결한 시편의 EDS분석결과, SrWO4의 첨가량이 많은 시편에서 2차상이 존재하는 것을 알수 있었다. 순수한 Sr(Mg1/3Nb2/3)O3에 SrWO4를 0.01 mole첨가하여 1550~1$600^{\circ}C$에서 소결한 시편의 유전특성은 $\varepsilon$r 30, Q$\times$fo$\geq$55000,$ au$f -23 ppm/$^{\circ}C$이었다. 0.01 mole SrWO4가 첨가된 (Sr1-xBax)(Mg1/3Nb2/3)O3 고용체의 유전율과 온도계숙가 x에 따라 점차적으로 계속 증가하였고 Q$\times$fo는 x$\leq$0.25에서 x에 따라 감소하고 x$\geq$0.3에서 다시 증가하였다. (Sr0.65Ba0.35)(Mg1/3Nb2/3)O3+0.01SrWO4의 조성을 갖는 시편에서 $\varepsilon$r 34.4, Q$\times$fo$\geq$55000,$\tau$f 0 ppm/$^{\circ}C$이었다.

  • PDF

Prevention of Back Side Humping in Laser Welding of Al 5J32 Alloy by Using Laser Power Modulation (Al 5J32 합금의 레이저 용접에서 레이저출력 모듈레이션을 이용한 이면 험핑 비드의 안정화)

  • Ahn, Do-Chang;Kim, Cheol-Hee;Kim, Jae-Do
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.80-84
    • /
    • 2011
  • In the 5xxx series Al-Mg alloy, magnesium addition can increase the strength of aluminum alloy by solid solution strengthening but it has a relatively low melting and boiling temperature. During full -penetration laser welding of the Al-Mg alloys, its low boiling point and high vapor pressure brings about the spiky humping bead on the bottom side. Under back-side shielding, the spiking of back bead can be reduced but it restraints the process flexibility. In this study, a square pulse waveform modulation was employed to stabilize keyhole and back bead surface without back-side shielding. By using an experimental design, the bead shapes were evaluated for various process parameters such as the focal position, welding velocity and waveform parameters and the smooth back bead shape could be achieved.

Feasibility of Powdered MSWI Ash Melted Slag as a Seed Crystal of crystallization reaction for the Removal of Phosphorus from Sewage (하수중 인제거를 위한 정석탈인반응의 정석재로서 소각분말 용융슬래그의 이용 가능성 평가)

  • Kim, Choong Gon;Shin, Hyun Gon;Kim, Seung Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • This study is a fundamental research to test the applicability of powdered MSWI(Municipal Solid Waste Incinerator) ash melted slag as a seed Crystal for crystallization reaction. Powdered ash melted slag was melted at $1100^{\circ}C$ and ground to lesser than 0.35mm. According to the result of the tests, calcium, enough for crystallization reaction, was eluted from powdered ash melted slag. Moreover, sample(Phosphorus concentration is under 10 mg/L), more than 90% of Phosphorus can be removed. So we rectify the Phosphorus concentration to 100 mg/L. Alkalinity, being well known that it interferes crystallization reaction, effect was studied for synthetic solution(100 mg/L initial Phosphorus concentration, 50 mg/L calcium, pH 8, 1% powdered ash melted slag dosage). For this result, we know that Phosphorus removal is hindered by alkalinity. In addition, the effect of reaction temperature was performed at the same method. The reaction velocity was increased through raising the reaction temperature.

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Physicochemical Characteristics of Chokong and Soaking Solution on Soaking Period (담금기간에 따른 초콩과 담금액의 이화학적 특성)

  • Jo, Yong-Jun;Jeong, Yong-Jin;Jang, Se-Young;Seo, Ji-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.281-286
    • /
    • 2010
  • Effects of soaking period on physicochemical characteristics of chokong (black soybean picked in brown rice vinegar) and soaking solution were investigated. The pH and soluble solid contents in soaking solution increased rapidly whereas total acidity decreased during the first 4 days of soaking. The sudden drop of color 'L' and 'b' values in soaking solution occurred one day after start of soaking; in contrast, 'a' value increased by 1 day, and then decreased for soaking periods. The strength and hardness of chokong showed a decreasing trend as soaking for a long time, and the values of chokong were lower than those of control (black soybean soaked in water and freeze dried). The protein bands of chokong for soaking appeared only under 24,000 Da of molecular weight by electrophoresis. The content of total amino acids of chokong pickled for 7 days was 86.86 mg%, about 3 times for 28.36 mg% of raw black soybean. The contents of essential amino acids, especially, leucine and phenylalanine increased greatly in chokong. In vitro digestibility for protein was 62% in raw black soybean and 84% in chokong pickled for 7 days. Therefore, these results may assumed that chokong will be good source of amino acids.

Investigation on the Sintering Behavior and Mechanical Properties of Al-Zn-Mg Alloy Powders Mixed with Al-Si-SiC Composite Powders (Al-Si-SiC 복합분말과 Al-Zn-Mg계 합금분말이 혼합된 분말의 소결 거동 및 기계적 특성연구)

  • Jang, Gwang-Joo;Kim, Kyung Tae;Yang, Sangsun;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.460-466
    • /
    • 2014
  • Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of $565-585^{\circ}C$. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at $580^{\circ}C$ for Al-Zn-Mg powders (composition A), 97.9% at $575^{\circ}C$ for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at $570^{\circ}C$ for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.