• 제목/요약/키워드: Mg hydride

검색결과 57건 처리시간 0.022초

주철의 흑연구상화에 미치는 기포의 영향 (The Effects of Gas Bubbles on the Graphite Spheroidization in Cast Iron)

  • 박실라;최답천;김관휴
    • 한국주조공학회지
    • /
    • 제9권6호
    • /
    • pp.474-482
    • /
    • 1989
  • The aim of this research is to investigate the effects of gas bubbles on the formation of spheroidal graphite in cast iron, Fe-Si-8%Mg alloy, mischmetal hydride($MmH_2$) and $CaCO_3$, which discharge various amounts of Mg, $H_2$ and $Co_2$, gases, were added to Fe-3.9% C-2.0%Si melt and the melt was innoculated with 0.3wt% of 75%Fe-Si. The spheroidal graphites and/or compacted vermicular graphites were produced with more than 0.625cc/g of Mg gas or more than 0.3125cc/g of $H_2$ gas while $CO_2$ gas did not contribute to graphite spheroidization. Nodule counts increased with the amount of Fe-Si-Mg added ; but they decreased with the amount of $MmH_2$ added because the number of effective gas bubbles decrease with the increase in Mm residual. The bull's eye structure was revealed with 0.625cc/g, 1.25cc/g of Mg and 0.3125cc/g of $H_2$ ; the ledeburite structure was revealed with more than 0.625cc/g of $H_2$.

  • PDF

Stenotrophomonas maltophilia OK-5에 의한 TNT 함유폐수 (pink water)의 생물학적 처리 와 Nitroreductase (pnrB) 유전자의 RT-PCR 정량화 (Biological Treatment of TNT-containing Wastewater (pink water) by Stenotrophomonas maltophilia OK-5, and RT-PCR Quantification of the Nitroreductase (pnrB) Gene)

  • 조수희;조윤석;오계헌
    • KSBB Journal
    • /
    • 제24권6호
    • /
    • pp.556-562
    • /
    • 2009
  • 본 연구는 TNT 분해능이 우수한 세균인 S. maltophilia OK-5를 이용하여 TNT 함유 폐수인 pink water의 미생물학적 처리 가능성에 대한 연구를 하였다. Pink water에 함유된 TNT 제거를 위해 S. maltophilia OK-5를 교반탱크 반응조에서 배양한 결과 pink water 내에 존재하는 100 mg/L의 TNT를 배양 6일 만에 완전 분해하였다. Hydride-Meisenheimer complex에서 유래하는 진한 적갈색은 배양기간 내에 증가하였으며, 이를 정량적으로 확인하였다. 본 연구에서 pink water에 잔류하는 TNT 뿐만 아니라 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,4-dinitro-6-hydroxytoluene 등의 대사산물도 HPLC 분석방법으로 측정하였으며, GC-MS를 사용하여 확인하였다. 또한 pink water에서 배양된 S. maltophilia OK-5에서 발현되는 nitroreductase (pnrB)의 유전자 발현 정량을 real time PCR로 측정하였다. 그 결과 배양 5일째 pnrB copy 수가 $10^3$ 이상 증가하는 것을 확인하였다.

Hydrogen Storage Properties of Pure MgH2

  • Kwak, Young Jun;Lee, Seong Ho;Park, Hye Ryoung;Song, Myoung Youp
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.266-270
    • /
    • 2013
  • The hydrogen storage properties of pure $MgH_2$ were studied and compared with those of pure Mg. At the first cycle, pure $MgH_2$ absorbed hydrogen very slowly at 573 K under 12 bar $H_2$. The activation of pure $MgH_2$ was completed after three hydriding-dehydriding cycles. At the $4^{th}$ cycle, the pure $MgH_2$ absorbed 1.55 wt% H for 5 min, 2.04 wt% H for 10 min, and 3.59 wt% H for 60 min, showing that the activated $MgH_2$ had a much higher initial hydriding rate and much larger $H_a$ (60 min), quantity of hydrogen absorbed for 60 min, than did activated pure Mg. The activated pure Mg, whose activation was completed after four hydriding-dehydriding cycles, absorbed 0.80 wt% H for 5 min, 1.25 wt% H for 10 min, and 2.34 wt% H for 60 min. The particle sizes of the $MgH_2$ were much smaller than those of the pure Mg before and after hydriding-dehydriding cycling. The pure Mg had larger hydrogen quantities absorbed at 573K under 12 bar $H_2$ for 60 min, $H_a$ (60 min), than did the pure $MgH_2$ from the number of cycles n = 1 to n = 3; however, the pure $MgH_2$ had larger $H_a$ (60 min) than did the pure Mg from n = 4 to n = 6.

$MgAl_{2}O_{4}$ 기판위에 GaN의 HVPE 성장조건에 따른 광루미네센스 특성 (Photoluminescence Properties of GaN on $MgAl_{2}O_{4}$ Substrate with HVPE Growth Conditions)

  • 김선태;이영주
    • 한국재료학회지
    • /
    • 제8권8호
    • /
    • pp.667-671
    • /
    • 1998
  • 이 연구에서는 HVPE법으로 $MgAl_{2}O_{4}$ 기판 위에 GaN를 서로 다른 조건에서 성장시키고, 성장된 GaN의 PL특성을 조사하였다. $MgAl_{2}O_{4}$ 기판위에 성장된 GaN는 $MgAl_{2}O_{4}$ 기판으로부터 Mg의 out-diffusion에 의한 auto-doping 효과에 의하여 불순물이 첨가된 GaN의 PL 성질을 나타내었다. Mg과 관련된 발광 강도는 GaN의 성장온도가 증가함에 따라 GaN의 표면에서 Mg의 재증발에 의하여 감소하였으며, GaN의 두께에 대하여 지수 함수적으로 감소하였다. 두 개의 무한 고체 사이에서 농도 차에 의한 확산현상을 고려하여 구한 GaN 내에서 Mg 원자의 확산계수는 D= 2$\times$$lO^{-10}\textrm{cm}^2/sec. 이었다.

  • PDF

Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구 (The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams)

  • 정승룡;허보영
    • 한국주조공학회지
    • /
    • 제31권3호
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

HCVD 방법으로 제조된 MgH2의 Cycling 특성 (Cycling Characteristics of MgH2 madeby Hydriding Chemical Vapor Deposition Method)

  • 박경덕;한정섭
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.945-949
    • /
    • 2011
  • The cycling characteristics of $MgH_2$ made by hydriding chemical vapor deposition method have been investigated. The particle size of $MgH_2$ made by HCVD was about $1{\mu}m$. The cycling experiment was performed by measuring hydrogen quantity absorbed at 673 K and under 35 atm of hydrogen pressure for 30 min. Up to 3 cycles the hydrogen storage capacity increased, but from 4 to 6 cycles the hydrogen storage capacity decreased rapidly. During this cycling test the particle size increased gradually from $1{\mu}m$ to $6{\mu}m$. This increase was due to sintering by the high reaction temperature and the heat of reaction during hydrogen absorption. From 7 to 30 cycles, the hydrogen storage capacity was maintained at 5.8 wt%. Even after 30 cycles, the plateau pressure was constant.

Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding

  • Song, Myoung Youp;Lee, Seong Ho;Kwak, Young Jun;Park, Hye Ryoung
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.129-134
    • /
    • 2014
  • Pure $MgH_2$ was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the $MgH_2$ after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar $H_2$. The initial hydriding rate of $MgH_2$ after RMG at 423 K under 12 bar $H_2$ was the highest (0.08 wt% H/min) at n = 2. At n = 2, the $MgH_2$ after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar $H_2$. At 573 K under 12 bar $H_2$, the $MgH_2$ after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar $H_2$, the $MgH_2$ after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the $MgH_2$ after RMG at a relatively low temperature of 423 K.

Effects of Nickel and Iron Oxide Addition by Milling under Hydrogen on the Hydrogen-Storage Characteristics of Mg-Based Alloys

  • Song, Myoung Youp;Baek, Sung Hwan;Park, Hye Ryoung;Mumm, Daniel R.
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.64-70
    • /
    • 2012
  • Samples of pure Mg, 76.5 wt%Mg-23.5 wt%Ni, and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ were prepared by reactive mechanical grinding and their hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation and to shorten diffusion distances of hydrogen atoms. After hydriding-dehydriding cycling, the 76.5 wt%Mg-23.5 wt%Ni and 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ samples contained $Mg_2Ni$ phase. In addition to the effects of the creation of defects and the decrease in particle size, the addition of Ni increases the hydriding and dehydriding rates by the formation of $Mg_2Ni$. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of particles. The reactive mechanical grinding of Mg-Ni alloy with $Fe_2O_3$ is considered to decrease the particle size.

Hydriding Chemical Vapor Deposition 방법으로 제조된 MgH2의 수소저장 특성 (Hydrogen Storage Property of MgH2 Synthesized by Hydriding Chemical Vapor Deposition)

  • 박경덕;한정섭;김진호;김병관
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.380-385
    • /
    • 2011
  • $MgH_2$ was synthesized by hydriding chemical vapor deposition (HCVD). In this study, we examined the hydrogen storage property of $MgH_2$ synthesized by HCVD. The results of pressure-composition-temperature (PCT) measurement showed that the HCVDed $MgH_2$ reversibly absorbed hydrogen as much as 6 wt%. Each hydrogenation rate was very greater than the conventional alloy methods. The reason was that the particle size made by HCVD was small as approximately 1 ${\mu}m$. The PCT of $MgH_2$ made by HCVD methode was similar to a commercial $MgH_2$. The ${\Delta}H$ and ${\Delta}S$ value are respectively -76.8 $kJ/mol{\cdot}H_2$ and -137.4 $kJ/mol{\cdot}H_2$. Mg made by HCVD methode was activated easily than commercial Mg. Also the initial reaction rate was faster than that of commercial $MgH_2$. 70% of the total storage were stored during 400s.

Mg2NiHx 수소화거동에 미치는 기계적합금화 공정의 영향 (The Effect of Planetary Ball Mill Process on the Hydrogenation Behavior of Mg2NiHx)

  • 임재원;하원;홍태환;김세광;김영직;박현순
    • 한국수소및신에너지학회논문집
    • /
    • 제10권2호
    • /
    • pp.131-139
    • /
    • 1999
  • The objective of this works was to synthesize the$Mg_2Ni$ hydrogen storage materials economically and to eliminate the intial activation process. $Mg_2NiH_x$ was mechanically alloyed under purified hydrogen gas atmosphere using pure Mg and Ni chips. M.A(Mechanical Alloying) was carried out using planetary ball mill for times varying from 12h to 96h under 20bars of hydrogen gas pressure. $Mg_2NiH_x$ started to form after 48h and the homogeneous $Mg_2NiH_x$ composites was synthesized after 96h. From TG analysis, the dehydriding reaction of $Mg_2NiH_x$ started at around $200^{\circ}C$. The result of P-C-T at $300^{\circ}C$ revealed the hydrogen storage capacity of $Mg_2NiH_c$ reached 3.68 wt% and the effective hydrogen storage was 2.38 wt%. The enthalpy difference of absorption-desorption cycling for the hydride formation and the hysteresis were reduced and the plateau flatness and the sloping were improved according to M.A time.

  • PDF