• 제목/요약/키워드: Mg hydride

검색결과 57건 처리시간 0.019초

기계적 합금화법으로 제조한 MgHx-Graphene 복합재료의 수소화 거동 특성 (Evaluation of Hydrogenation Behavior of MgHx-Graphene Composites by Mechanical Alloying)

  • 이수선;이나리;김경일;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.780-786
    • /
    • 2011
  • Mg hydride had high hydrogen capacity (7.6%), lightweight and low cost materials and it was promising hydrogen storage material at high temperature. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. one of the approaches to improve the kinetic is $MgH_x$ intermixed with carbon. And it shows that carbon and carbon allotropes have a beneficial effect on hydrogen sorption in Mg. The graphene is a kind of carbon allotropes which is easily desorbed reaction at low temperatures because its reaction is exothermic. In this work, the effect of graphene concentration on the kinetics of Mg hydrogen absorption reaction was investigated. The $MgH_x$-Graphene composites has been prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. In this research, results of kinetic profiles exhibit hydrogen absorption rate of $MgH_x$-5wt.% and 10wt.% graphene composite, as 1.25wt.%/ms, 10.33wt.%/ms against 0.88wt.%/ms for $MgH_x$ alone at 473K.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • 한국분말재료학회지
    • /
    • 제16권1호
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

$MgAl_2O_4$ 기판위에 HVPE법으로 성장된 후막 GaN의 광학적 특성 (Optical Properties of HVPE Grown Thick-film GaN on $MgAl_2O_4$ Substrate)

  • 이영주;김선태
    • 한국재료학회지
    • /
    • 제8권6호
    • /
    • pp.526-531
    • /
    • 1998
  • HVPE(hydride vapor phase epitaxy)법으로 (111) $MgAl_2O_4$기판 위에 $10~240\mu{m}$두께의 GaN를 성장하고, GaN의 두께에 따 광학적 성질을 조사하였다. $MgAl_2O_4$기판 위에 성장된 GaN의 PL 특성은 결정성장온도에서 기판으로부터 Mg이 out-diffusion하여 auto-doping 됨으로써 불순물이 첨가된 GaN의 PL 특성을 나타내었다. 10K의 온도데서 측정된 PL 스펙트럼은 자유여기자와 속박여기자의 재결합천이에 의한 피크들과 불순물과 관련된 도너-억셉터 쌍 사이의 재결합 및 이의 포논 복제에 의한 발광으로 구성되었으며, 깊은 준위로부터의 발광은 나타나지 않았다. 중성 도너에 속박된 여기자 발광 에너지와 라만 $E_2$모드 주파수는 GaN의 두께가 증가함에 따라 지수 함수적으로 감소하였으며, GaN 내의 잔류 응력에 대하여 라만 E2 모드 주파수는$\Delta$$\omega$=3.93$\sigma$($cm^{-1}$/GPa)의 관계로 변화하였다.

  • PDF

HVPE 방법에 의해 r-plane 사파이어 기판 위의 선택 성장된 GaN/AlGaN 이종 접합구조의 특성 (Characteristics of selective area growth of GaN/AlGaN double heterostructure grown by hydride vapor phase epitaxy on r-plane sapphire substrate)

  • 홍상현;전헌수;한영훈;김은주;이아름;김경화;황선령;하홍주;안형수;양민
    • 한국결정성장학회지
    • /
    • 제19권1호
    • /
    • pp.6-10
    • /
    • 2009
  • 본 논문에서는 혼합소스(mixed-source) HVPE(hydride vapor phase epitaxy)방법으로 선택성장(SAC: selective area growth) GaN/AlGaN 이종접합구조의 발광다이오드를 r-plane 사파이어 기판 위에 제작하였다. SAG-GaN/AlGaN DH(double heterostructure)는 고온 GaN 버퍼층, Te 도핑된 AlGaN n-클래딩층. Gan 활성층. Mg 도핑된 AlGaN p-클래딩층. Mg 도핑된 GaN p-캡층으로 구성되어있다. GaN/AlGaN 이종접합구조의 발광다이오드의 특성을 알아보기 위해 SEM을 통한 구조적 분석과 전류-전압 측정(I-V: current-voltage measurement), 전류-광출력(EL: electroluminescence) 측정을 통하여 전기적, 광학적 특성을 평가하였다.

수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가 (Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites)

  • 한정흠;이영환;유제선;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.220-226
    • /
    • 2019
  • Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.

자전연소합성법으로 제조한 80wt% AB2-15wt% Mg-5wt% Mm 금속수소화물의 cycling특성 (Cycling Properties of 80wt% AB2-15wt% Mg-5wt% Mm Metal Hydride made by Hydriding Combustion Synthesis)

  • 허태홍;한정섭
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.634-640
    • /
    • 2011
  • The effect of cycling on the absorption and desorption characteristics of the 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm system was investigated. The material was made by Hydrogen Combustion Synthesis. The cycling experiment was performed at 298 K, 30 atm for 15 min. During the reaction time, the amount of absorption was fully desorbed. After the full activation, the hydrogen storage capacity was 1.57 wt% and the capacity was maintained until 50 cycles. And the reaction rate does not change with an increase in the number of cycles. This material has good durability and reversible feature.

기계적 합금화법으로 제조된 $Mg_2Ni$-5mass% Nb 복합재료의 수소화 특성평가 (Hydrogenation Properties of $Mg_2Ni$-5mass% Nb Composites by Mechanical Alloying)

  • 석송;연규붕;김경일;유성웅;조경원;김기배;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.389-394
    • /
    • 2006
  • Mg and Mg-based alloys are promising hydrogen storage alloys for renewable clean energy applications. It is a lightweight and low cost material with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. In this work, we aim to study the absorption properties of the $Mg_2Ni$-5mass% Nb composite prepared by mechanical alloying under hydrogen. The absorption capacity of the sample is found to be about 3.0 wt.% at T=573 K and P=1.0 MPa. The absorption characteristics observed have been compared with those of the prepared $Mg_2Ni$.

Mg2NiHx-5wt% CaO 복합재료의 수소화 속도 (Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites)

  • 신효원;황준현;김은아;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

Mg2NiHx-10wt% CaF2 수소저장합금의 제조와 수소화 흡수평가 (Fabrication and Evaluation Hydrogenation Absorbing on Mg2NiHx-10 wt% CaF2 Composites)

  • 유제선;한정흠;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.553-557
    • /
    • 2020
  • It is possible that hydrogen could replace coal and petroleum as the predominant energy source in the near future, but several challenges including cost, efficiency, and stability. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and high absorption capacity. Their range of applications could be further extended if their hydrogenation properties could be improved. The main emphasis of this study was to investigate their hydrogenation properties for Synthesis of 10wt.% CaF2 in Mg2NiHx systems. The effect of BCR (66:1) and MA time (96 hours) on the hydrogenation properties of the composite was investigated. also, Mg2NiHx-10wt% CaF2 composites prepared by Mechanical Alloying are used in this work to illustrate the effect of catalysts on activation energy and kinetics of Magnesium hydride.

Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가 (Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites)

  • 황준현;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권2호
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.