• Title/Summary/Keyword: Mg and In co-doping

Search Result 25, Processing Time 0.02 seconds

Bioequivalence Evaluation of the Tiropramide Formulation by GC/MS (티로프라미드 주사제의 생물학적 동등성 평가를 위한 GC/MS 방법)

  • Myung, Seung-Woon;Kim, Myungsoo;Kim, Hye-Young;Kwak, Hyun-Tae;Min, Hye-Ki;Sohn, Dong-Ryul;Hong, Young-Hun
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • The bioequivalence study of two tiropramide products was evaluated in 16 health male volunteers following intra-muscular injection. Test product was Tiram$^{(R)}$ injection (S Pharm. Co, Ltd.) and reference product was Tiropa$^{(R)}$ injection(D Pharm. Co., Ltd.). The drug concentration in plasma was determined by GC/MS for over a period of 8 hours after injection. Analysis of variance reveal that there are no differences in AUC (area under the plasma concentration-time curve from time zero to infinity), Cmax (maximum plasma concentration) and Tmax (time to reach Cmax). The differences of mean AUC, Cmax and Tmax between two products were 0.73, -1.385 and -12.994%, respectively. Minimum detectable differences (%) at ${\alpha}=0.05$ were all less than 20% given as a guideline (10.05, 17.90 and 19.01% for AUC, Cmax and Tmax, respectively). From these results, the two formulations of tiropramide are bioequivalent and thus, may be prescribed interchangeably.

  • PDF

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

Preparation and Characterization of Doped $Fe_2O_3$ and GaAs Photosemiconductive Electrodes for $CO_2$ Fixation

  • Kim, Il Kwang;Lee, Seong Jae;Kim, Min Su;Jeong, Seung Il;Park, Byung Sun;Kim, Youn Geun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.669-674
    • /
    • 1995
  • The preparation and characterization of photosemiconductive electrodes of GaAs and of $Fe_2O_3$ doped with MgO or CaO were investigated. The doped $Fe_2O_3$ photosemiconductive electrodes were prepared from thin films sintered at temperatures from 1,100 to $1,450^{\circ}C$, and rapidly quenched in distilled water. The surfaces of the electrodes containing both corundum structure of $Fe_2O_3$ and spinel structure of $Mg_xFe_{3-x}O_4$ or $Ca_xFe_{3-x}O_4$ were analyzed by X-ray diffraction and scanning electron microscopy. The cathodic and anodic photocurrents on these electrodes indicated a critical doping amount of 5-11 wt. %. The photocurrents were enhanced when GaAs electrodes were treated with methylene violet the anodic photo-currents were temporarial enhanced and changed to the cathodic ptotocurrents after the surface was dryed.

  • PDF

Synthesis of Tialite Ceramic Pigments and Coloring in Glazes (Tialite계 세라믹 안료의 합성 및 유약에서의 발색)

  • Kim, Yeon-Ju;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.450-455
    • /
    • 2011
  • [ $Al_2TiO_5$ ]has a high refractive index and good solubility of the chromophore in the $Al_2TiO_5$ lattice, which allows this structure to be a good candidate for the development of new ceramic pigments. However, pure $Al_2TiO_5$ is well known to decompose on firing at $900{\sim}1100^{\circ}C$. However, this process can be inhibited by the incorporation of certain metal cations into its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the $Al_2TiO_5$ crystal structure. The $Al_2TiO_5$ was synthesized using $Al_2O_3$ and $TiO_2$, and doped with $Co_3O_4$ as a chromophore material. In order to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05 mole, 0.1 mole, and 0.15 mole as a stabilizer. The samples were fired at $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. $Al_2O_3$ was available for the formation of $CoAl_2O_4$, which should also be considered in order to explain the small amount of this phase detected in the sample with the higher $Co^{2+}$ content (${\geq}$ 0.03 mole). It was found that the solubility limit of $Co^{2+}$ in the $Al_2TiO_5$ crystal was 0.02 mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02 mole% of $Co^{2+}$ to lime-barium glaze, stabilized gray color pigments with 66.54, -2.35, and 4.68 as CIE-$L^*a^*b^*$ were synthesized.

Relationship between Particle Density and Electrochemical Properties of Spherical LiMn2-xMxO4 (M = Al, Mg, B) Spinel Cathode Materials (구형 스피넬계 LiMxMn2-xO4 (M = Al, Mg, B) 양극소재의 입자치밀도와 전지성능간의 상관관계에 대한 연구)

  • Kim, Kyoung-Hee;Jung, Tae-Gyu;Song, Jun-Ho;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Spherical lithium manganese oxide spinel, $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) prepared by wet-milling, spray-drying, and sintering process has been investigated as a cathode material for lithium ion batteries. As-prepared powders exhibit various surface morphologies and internal density in terms of boron (B) doping level. It is found that the dopant B drives the growth of the primary particle and minimizes the surface area of the powder. As a result, the dopant enhances the internal density of the particles. Electrochemical tests demonstrated that the capacity of the synthesized material at 5 C could be maintained up to 90% of that at 0.2 C. The cycle performance of the material showed that the initial capacity was retained up to 80% even after 500 cycles under the high temperature of $60^{\circ}C$.