• Title/Summary/Keyword: Mg Powders

Search Result 378, Processing Time 0.027 seconds

Effects of the size of Mg powder on the formation of MgB2 and the superconducting properties

  • Kim, D.N.;Jun, B.H.;Park, S.D.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.9-14
    • /
    • 2016
  • The effect of the size and shape of magnesium(Mg) powder on the formation of $MgB_2$ and the critical current density($J_{c,}$) of $MgB_2$ bulk was studied. As a precursor for the formation of $MgB_2$, Mg and $MgB_4$ powder, which was synthesized through the reaction of boron (B) with Mg powders, was used. $MgB_4$ was mixed with Mg powders of various sizes, pressed into pellets and heat-treated at $650^{\circ}C-750^{\circ}C$ in flowing argon gas. The XRD analysis of the heat-treated $MgB_2$ samples showed that the volume fraction of $MgB_2$ was the highest as 92.74 % when spherical Mg powder with an average size of $25.7{\mu}m$ was used, whereas the volume fraction was the lowest as 79.64 % when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The superconducting transition temperature ($T_c$) of $MgB_2$ was not sensitive to the characteristics of the Mg powders used. All of the prepared $MgB_2$ samples showed a high $T_c$ of 38.3 K and a small superconducting transition width of 0.2 K-0.5 K. $J_c$ (5 K and 1 T) of $MgB_2$ was the highest as $3.93{\times}10^4A/cm^2$ when spherical Mg powder with a size of $25.7{\mu}m$ was used, whereas $J_c$ was the lowest as $2.18{\times}10^4A/cm^2$when plate-like Mg powder with a size of $34.1{\mu}m$ was used. The relationship between the $J_c$ of $MgB_2$ and the characteristics of the Mg powders used was explained in terms of the volume fraction of $MgB_2$ and the apparent density of the $MgB_2$ pellets.

Effect of Powder Size of Mg-Zn-Y Alloy on the Consolidation

  • Kim, Taek-Soo;Chae, H.J.;Lee, J.K.;Jung, H.G.;Kim, Y.D.;Bae, J.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1266-1267
    • /
    • 2006
  • [ $MgZn_{4.3}Y_{0.7}$ ] alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of powders as atomized and bars as extruded was examined as a function of initial powder size distribution using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain sizes were decreased with extruding as well as decreasing the initial powder sizes. Both the ultimate strength and elongation were enhanced as the initial powder sizes were decreased.

  • PDF

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion (고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동)

  • Yoon, Eun-Yoo;Chae, Hong-Jun;Kim, Taek-Soo;Lee, Chong-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.

Superconducting properties of MgB2 superconductors in-situ processed using various boron powder mixtures

  • Kang, M.O.;Joo, J.;Jun, B.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.45-50
    • /
    • 2021
  • In this study, the effect of the size of B powder on the critical current density (Jc) of MgB2 prepared by an in situ reaction process was investigated. Various combinations of B powders were made using a micron B, ball-milled B and nano B powders. Micron B powder was reduced by ball milling and the milled B powder was mixed with the micron B or nano B powder. The mixing ratios of the milled B and micron or nano B were 100:0, 50:50 and 0:100. Non-milled micron B powder was also mixed with nano powder in the same ratios. Pellets of (2B+Mg) prepared with various B mixing ratios were heat-treated to form MgB2. Tc of MgB2 decreased slightly when the milled B was used, whereas the Jc of MgB2 increased with increasing amount of the milled B or the nano powder. The used of the milled B and nano B power promoted the formation MgB2 during heat treatment. In addition to the enhanced formation of MgB2, the use of the powders reduced the grain size of MgB2. The use of the milled and nano B powder increased the Jc of MgB2. The highest Jc was achieved when 100% nano B powder was used. The Jc enhancement is attributed to the high volume fraction of the superconducting phase (MgB2) and the large grain boundaries, which induces the flux pinning at the magnetic fields.

Effects of Sintering Temperature and Atmosphere on Densification of Hypereutectic Al-Si Alloy Powders (Al-20Si-5.5Fe-1.2Mg-0.5Mn 합금분말의 치밀화에 미치는 소결온도와 분위기의 영향)

  • Lee, Jae-Wook;Park, Sang-Bin;Yang, Sang-Sun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.196-203
    • /
    • 2008
  • The densification behavior of Al-20Si-5.5Fe-1.2Mg-0.5Mn powders was investigated through micro-structure analysis of sintered specimens. The specimens sintered in vacuum or in high purity (99.999%) nitrogen showed porous near-surface microstructures. The densification of near-surface part was enhanced by means of ultra-high purity (99.9999%) nitrogen atmosphere. The relationship between slow densification and oxide surfaces of Al alloy powders was discussed. And the effects of Mg addition, nitrogen gas, and humidity on densification were discussed. In addition, the rapid growth of primary Si crystals above the critical temperature was reported.

Reaction temperature dependence of MgB2 superconducting bulks using the different sizes of Mg raw powders

  • K.C., Chung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.36-39
    • /
    • 2022
  • Since the MgB2 superconductor is simply composed of two constituents of Mg and B, its performance can be monitored easily with the change of one ingredient compared to the other. With the powder size of B less than 100 nm, two different sizes of Mg powders are used to investigate the reaction temperature dependence of MgB2 bulk samples. In the range of 630-700℃ for the duration of 30 min., the un-reacted Mg is seen only at 630℃ with Mg powder size of <5 ㎛, whereas Mg traces are detected at all the temperature range with Mg powder size of <45 ㎛. The reaction temperature dependence of MgB2 superconducting transition temperature, Tc, shows little difference whether Mg powder size is large or small in this range except for the 630℃. It is worthy of notice that the critical current densities of MgB2 show higher performance with the small size of Mg compared to the large one at all field ranges. With the Mg powder size of <45 ㎛, flux pinning is enhanced with decreasing the reaction temperature, whereas flux pinning properties is quite similar in the Mg powder size of <5 ㎛ except for the 630℃, where Mg is left behind after the reaction.

Characteristics of BaMgAl10O17:Eu Phosphor Powders Prepared from Spray Solution with Organic Additives and NH4Cl Flux (유기 첨가제 및 NH4Cl 융제를 함유하는 분무용액으로부터 합성된 BaMgAl10O17:Eu 형광체의 특성)

  • Lee, Sang Ho;Koo, Hye Young;Ko, Da Rae;Lee, Su Min;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • The precursor powders with thin wall structure were prepared by spray pyrolysis from the spray solution with ethylenediaminetetraacetic acid, citric acid and $NH_4Cl$ flux. The $BaMgAl_{10}O_{17}:Eu$ phosphor powders formed from the spray solution without organic additives and flux material had sizes of $1{\sim}5{\mu}m$ and hollow structure with high thickness at post-treatment temperature of $1,200^{\circ}C$. However, $BaMgAl_{10}O_{17}:Eu$ phosphor powders formed from the spray solution with ethylenediaminetetraacetic acid, citric acid and $NH_4Cl$ flux had fine size and plate-like shape. The mean crystallite sizes of the phosphor powders with fine sizes were 23, 35, and 33 nm when the content of $NH_4Cl$ flux were 0, 6, 35 wt% of phosphor. The photoluminescence intensity of the phosphor powders formed from the spray solution with the optimum amount of $NH_4Cl$ flux as 35 wt% was 215% of that of the phosphor powders formed from the spray solution without flux material.

Properties of Bulk and Powder of $Al_{86}Ni_6Ce_4Mg_4$ Amorphous Alloy Produced by He Gas Atomization (헬륨가스분사법으로 제조된 $Al_{86}Ni_6Ce_4Mg_4$ 비정질합금 분말과 성형재의 특성)

  • Bae, Cha-Hurn;Kim, Sung-Gyoo;Lee, Byung-Woo;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.158-163
    • /
    • 1997
  • Properties of $Al_{86}Ni_6Ce_4Mg_4$ alloy powder produced by helium gas atomization process were investigated by using DSC, XRD, SEM and TEM. The powders below 32 ${\mu}m$ in diameter were identified as an amorphous phase mixed with a ${\alpha}-Al$ phase. $Al_{86}Ni_6Ce_4Mg_4$ bulk alloy was manufactured by hot extruding the alloy powders at various temperatures, and the estimation of its mechanical properties was carried out subsequently. As a result, the bulk alloy extruded at the temperature below $450^{\circ}C$ exhibited the microstructure in which the near-spherical shape of some powders below 20 ${\mu}m$ were nearly unchanged and fine voids between matrix and powders were formed during extrusion process. On the other hand, the tensile strength and elongation at room temperature for $Al_{86}Ni_6Ce_4Mg_4$ bulk alloy extruded at $450^{\circ}C$ were 750 MPa and 7.5%, respectively.

  • PDF

Nutritional Components and Antioxidant Activities of Various Stachys Sieboldii Miq Parts (초석잠 부위별 영양성분 및 항산화효과)

  • Kim, Yeon-Kyoung;Son, Hee-Kyoung;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.2
    • /
    • pp.203-215
    • /
    • 2017
  • This study was carried out to compare the major nutrient components and antioxidant activities of Stachys sieboldii Miq leaf and root powders. For proximate compositions, crude protein and crude fat contents of leaf powder were higher than those of root powder, whereas contents of crude ash and carbohydrates were lower in leaf powder. The content of glutamic acid was greater in amino acids of leaf and root powders, and contents of total amino acids and essential amino acids were higher in leaf powder compared with root powder. Root powder contained a higher level of total unsaturated fatty acids than leaf powder. Total contents of organic acids were higher in leaf powder; tartaric acid was the major organic acid in leaf powder, and malic acid was the major organic acid in root powder. The content of vitamin A was higher in leaf powder than in root powder. However, vitamin E content was higher in root powder than in leaf powder. Total mineral contents of leaf powder were higher than those of root powder, and mineral contents of leaf and root powders were in the order of K>Ca>Mg. Extract yields of leaf and root powders were 27.21% and 58.51%, respectively. Total polyphenols and total flavonoids of leaf extract were 236.35 mg/g and 1.90 mg/g, respectively, which were higher than those of root extract. The $IC_{50}$ values of leaf and root ethanol extracts based on DPPH hydroxyl scavenging were 0.69 mg/mL and 5934.31 mg/mL, respectively, and antioxidative activities of ethanol extracts from all Stachys sieboldii Miq parts dose-dependently increased. These results suggest that Stachys sieboldii Miq can be recommended as an edible functional food material.

Fabrication and hydrogen storage property of eutectic Mg-Ni based alloy powder (공정 Mg-Ni계 합금 분말의 제조 및 수소저장 특성)

  • Hong, Seong-Hyeon;Bae, Jong-Soo;Yim, Chang-Dong;Na, Young-Sang;Song, Myoung-Youp
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.174-180
    • /
    • 2006
  • The eutectic Mg-23.5%Ni alloy was casted by melting and solidification. The powders of Mg-23.5%Ni and (Mg-23.5%Ni)-10% iron oxide were prepared by mechanical grinding of casted Mg-Ni alloy and casted Mg-Ni alloy+oxide, respectively. As milling time increases, hydriding and dehydriding rates of Mg-Ni and Mg-Ni-oxide alloy powders increase. The additions of iron oxide to Mg-Ni alloy and Mg-Ni-oxide increase hydriding rates and slightly decrease dehydriding rates.