• Title/Summary/Keyword: Mg$_2$Si precipitates

Search Result 27, Processing Time 0.022 seconds

Direct Observation of Heterogeneous Nucleation in Al-Si-Cu-Mg Alloy Using Transmission Electron Microscopy and Three-dimensional Atom Probe Tomography

  • Hwang, Jun Yeon;Banerjee, Rajarshi;Diercks, David R.;Kaufman, Michael J.
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • The heterogeneous nucleation of the ${\Theta}^{\prime}$ phase on nanoscale precipitates has been investigated using a combination of three-dimensional atom probe tomography and high-resolution transmission electron microscopy. Two types of ${\Theta}^{\prime}$ phases were observed, namely small (~2 nm thick) cylindrical precipitates and larger (~100 nm) globular precipitates and both appear to be heterogeneously nucleated on the nanoscale precipitates. The composition and crystal structure of precipitates were directly analyzed by combination of two advanced characterization techniques.

Differences in Cold Rolling Workability and Mechanical Properties between Al-Mg-Si and Al-Mg-Zn System Alloys with Cold Rolling (냉간압연가공에 따른 Al-5.5Mg-2.9Si계와 Al-7Mg-0.9Zn계 합금의 압연가공성 및 기계적 특성 차이)

  • Yang, Ji-Hun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.628-634
    • /
    • 2016
  • The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg-0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of $Mg_2Si$. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.

Effects of Ca, Si on the Microstructure and Aging Characteristic of AZ91 Alloy (AZ91합금의 조직(組織)과 시효특성(時效特性)에 미치는 Ca 및 Si의 영향(影響))

  • Jhee, T.G.;Kim, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.6
    • /
    • pp.260-268
    • /
    • 2002
  • The effects of calcium and silicon on microstructure and aging characteristics of AZ91 magnesium alloy during T5 treatment was investigated. The addition of 0.88% calcium or 0.25% silicon to AZ91 alloy made dendrite cell smaller. Especially, silicon is more effectively acted as refinement of the dendrite cell than calcium. It is due to that $Mg_2Si$ precipitated at the dendrite cell boundary or in the matrix during T5 treatment of Si added AZ91 alloy retarded the growth of the secondary phase. In the mean while, without inducing the precipitates containing calcium, calcium was segregated mainly around secondary phase such as $Mg_{17}Al_{12}$ and partially dissolved in ternary eutectic (Mg-Al-Ca) structure. In the AZ91 alloy containing both silicon and calcium, more finely distributed $Mg_2Si$ in matrix homogeneously and much finer microstructure were obtained than those containing silicon or calcium. Hence, An AZ91 containing both silicon and calcium was more effective to retarding the growth of the secondary phase than the other AZ91 alloy such as AZ91 alloy containing silicon or AZ91 alloy containing calcium.

Investigation on the Sintering Behavior and Mechanical Properties of Al-Zn-Mg Alloy Powders Mixed with Al-Si-SiC Composite Powders (Al-Si-SiC 복합분말과 Al-Zn-Mg계 합금분말이 혼합된 분말의 소결 거동 및 기계적 특성연구)

  • Jang, Gwang-Joo;Kim, Kyung Tae;Yang, Sangsun;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.460-466
    • /
    • 2014
  • Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of $565-585^{\circ}C$. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at $580^{\circ}C$ for Al-Zn-Mg powders (composition A), 97.9% at $575^{\circ}C$ for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at $570^{\circ}C$ for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

Silica and Iron Oxide Recovery and Mineral Carbonation from Serpentine Minerals Using Acid Dissolution and pH Swing Processes (산 처리와 pH 조절을 이용한 사문석군 광물로부터 규소와 철산화물 회수 및 광물 탄산화 연구)

  • Baek, Jiyeon;Jo, Yeonu;Lee, Jeongheon;Kwon, Nayoon;Kim, Yeram;Choi, Suk;Kim, Sunghee;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • The objectives of this study were to recover silica and iron oxides and $CO_2$ sequestration using serpentine via various acid dissolution and pH swing processes. Serpentine collected from Guhang-myeon in S. Korea were mainly composed of antigorite and magnetite consisting of $SiO_2$ (45.3 wt.%), MgO (41.3 wt.%), $Fe_2O_3$ (12.2 wt.%). Serpentine pulverized ($${\leq_-}75{\mu}m$$) and then dissolved in 3 different acids, HCl, $H_2SO_4$, $HNO_3$. Residues treated with acidic solution were recovered from the solution (step 1). And then the residual solution containing dissolved serpentine was titrated using $NH_4OH$. And pH of the solution increased up to pH=8.6 to obtain reddish precipitates (step 2). After recovery of the precipitates, the residual solution reacted with $CO_2$ and then pH increased up to pH=9.5 to precipitate white materials (step 3). The mineralogical characteristics of the original sample and harvested precipitates were examined by XRD, and TEM-EDS analyses. ICP-AES analysis was also used to investigate solution chemistry. The dissolved ions were Mg, Si, and Fe. The antigorite became noncrystralline silica after acid treatment (step 1). The precipitate at pH=8.6 was mainly amorphous iron oxide, of which size ranged from 2 to 10 nm and mainly consisting of Fe, O, and Si (step 2). At pH=9.5, nesquehonite [$Mg(HCO_3)(OH){\cdot}2(H_2O)$] and lasfordite [$MgCO_3{\cdot}H_2O$] were formed after reaction with $CO_2$ (step 3). The size of carbonated minerals was ranged from 1 to $6{\mu}m$. These results indicated that the acid treatment of serpentine and pH swing processes for the serpentine can be used for synthesis of other materials such as silica, iron oxides and magnesium carbonate. Also, This process may be useful for the precursor synthesis and $CO_2$ sequestration via mineral carbonation.

Impact of the Silicate Polymerization on the Formation of Insoluble Aluminium Silicate (수 중 존재하는 실리케이트의 존재형태가 불용성 알루미늄실리케이트 형성에 미치는 영향)

  • Gwon, Eun-Mi;Hong, Seung-Kwan;Kim, Ji-Hyong;Jung, Wook-Jin;Yoo, Myung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.654-661
    • /
    • 2007
  • The goal of this research was to identify the impact of silicate polymerization on the formation of insoluble aluminiumsilicate salts which could be a cause of irreversible fouling in the membrane process by lab-scale test. For this, the amount and characteristics of precipitates that were formed in six samples with different Al and Si concentration were analyzed. And the particles was also observed by SEM-EDS(Scanning Electron Microscope - Electron Dispersion Spectrophotometer) to compare morphology and ratio of Al and Si in each precipitates. Finally the reactive and nonreactive silicate contents in the solution and precipitates were analyzed to calculate silicate form content in each fraction. The amount of precipitates was in proportion to the total concentration of both element in solution. And the amount of insoluble particle that was not dissolved in the acid solution was recorded the highest in the sample 2 of which Si concentration was lower than the saturation concentration, 50 mg/L. The content of reactive silicate in precipitates was also recorded the highest value in sample 2 of which almost silicate form was reactive. When the silicate concentration is same, that value was recorded the highest in the sample with highest Al concentration. The SEM morphology of the precipitates was similar to that of Aluminiumhydroxide and the insoluble precipitates was not dissolved in acidic solution with pH 2.7 was able to observed only in sample 2. The ratio of Al and Si in the precipitates was ranged $0.48\sim3.14$, thai of sample 2 was recorded the highest value, 3.14. It is concluded that the insoluble aluminiumsilicate could be easily formed in the solution of which silicate exist as a reactive form and coexisting Al is sufficient.

Effects of Processing Parameters on the Mechanical Properties of Aluminium Matrix Composites (알루미늄 기지 금속복합재료의 기계적 성질에 미치는 제조변수의 영향)

  • Kim, J.D.;Koh, S.W.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.130-136
    • /
    • 2005
  • The effects of additional Mg content, the size and volume fraction of reinforcement phase on the mechanical properties of ceramic particle reinforced aluminium matrix composites fabricated by pressureless metal infiltration process were investigated. The hardness of $SiC_p/AC8A$ composites increased gradually with an increase in the additive Mg content, while the bending strength of $SiC_p/AC8A$ composites increased with an increase in additive Mg content up to 5%. However, this decreased when the level of additive Mg content was greater than 5% due to the formation of coarse precipitates by excessive Mg reaction and an increase in the porosity level. The hardness and strength of the composites increased with decreasing the size of SiC particle. It was found that the composites with smaller particles enhanced the interfacial bonding than those with bigger particles from fractography of the composites. The hardness of $Al_2O_{3p}/AC8A$ composites increased gradually with an increase in the volume fraction, however, the bending strength of $Al_2O_{3p}/AC8A$ composites decreased when the volume fraction of alumina particle was greater than 40% owing to the high porosity level.

  • PDF

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

EFFECTS OF AGING TREATMENT ON MICROSTRUCTURE AND STRENGTH OF WELD HEAT AFFECTED ZONE OF 6N01-T5 ALUMINUM ALLOY

  • Yoshida, Naoharu;Shibao, Masami;Ema, Mitsuhiro;Sasabe, Seiji;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • Effects of the aging treatments on the microstructure and strength of heat affected zone(HAZ) in the welds of a age-hardened Al-Mg-Si alloy, 5N01-T5, were investigated. The base metal aging treatments before MIG welding were conducted at 423K to 473K for 28.8ks Post weld heat treatment(PWHT) to recover the HAZ strength was performed at 448K for 28.8ks. Microstructure observations, hardness measurements and tensile tests were conducted to study properties of the MIG weld joints. The position of the softest region in HAZ where the hardness insufficiently recovered after natural aging and PWHT was at a distance of approximately 15mm from the center of the fusion zone. Hardness of the softest regions after natural aging and PWHT decreased with increase in the base metal aging temperature. TEM observation clarified that strengthening ${\beta}$"(Mg$_2$Si) precipitates and coarse ${\beta}$′ precipitates affected the hardnes of HAZ. Incomplete recover of hardness in HAZ after PWHT was caused by the precipitating of non-hardening ${\beta}$′ phase during the weld thermal cycle. In order to examine the effects of weldheat input and welding speed, the laser weld joints were also investigated and compared with the MIG weld ones. Laser welding had the narrower width of the softened regions in HAZ compared with MIG welding. The hardness of the softest regions of the laser welds after PWHT was higher than that of the MIG welds. Quantitative relations between hardness of the softest region and base metal aging temperature were obtained for both welding processes. Accordingly, the equations to estimate the strength of the weld joints after PWHT with varying base metal temperatures were proposed for MIG welding and laser welding.

  • PDF