• Title/Summary/Keyword: Methylome

Search Result 12, Processing Time 0.02 seconds

Dynamic Transcriptome, DNA Methylome, and DNA Hydroxymethylome Networks During T-Cell Lineage Commitment

  • Yoon, Byoung-Ha;Kim, Mirang;Kim, Min-Hyeok;Kim, Hee-Jin;Kim, Jeong-Hwan;Kim, Jong Hwan;Kim, Jina;Kim, Yong Sung;Lee, Daeyoup;Kang, Suk-Jo;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.953-963
    • /
    • 2018
  • The stepwise development of T cells from a multipotent precursor is guided by diverse mechanisms, including interactions among lineage-specific transcription factors (TFs) and epigenetic changes, such as DNA methylation and hydroxymethylation, which play crucial roles in mammalian development and lineage commitment. To elucidate the transcriptional networks and epigenetic mechanisms underlying T-cell lineage commitment, we investigated genome-wide changes in gene expression, DNA methylation and hydroxymethylation among populations representing five successive stages of T-cell development (DN3, DN4, DP, $CD4^+$, and $CD8^+$) by performing RNA-seq, MBD-seq and hMeDIP-seq, respectively. The most significant changes in the transcriptomes and epigenomes occurred during the DN4 to DP transition. During the DP stage, many genes involved in chromatin modification were up-regulated and exhibited dramatic changes in DNA hydroxymethylation. We also observed 436 alternative splicing events, and approximately 57% (252) of these events occurred during the DP stage. Many stage-specific, differentially methylated regions were observed near the stage-specific, differentially expressed genes. The dynamic changes in DNA methylation and hydroxymethylation were associated with the recruitment of stage-specific TFs. We elucidated interactive networks comprising TFs, chromatin modifiers, and DNA methylation and hope that this study provides a framework for the understanding of the molecular networks underlying T-cell lineage commitment.

Comprehensive profiling of DNA methylation in Korean patients with colorectal cancer

  • Hyeran Shim;Kiwon Jang;Yeong Hak Bang;Hoang Bao Khanh Chu;Jisun Kang;Jin-Young Lee;Sheehyun Cho;Hong Seok Lee;Jongbum Jeon;Taeyeon Hwang;Soobok Joe;Jinyeong Lim;Ji-Hye Choi;Eun Hye Joo;Kyunghee Park;Ji Hwan Moon;Kyung Yeon Han;Yourae Hong;Woo Yong Lee;Hee Cheol Kim;Seong Hyeon Yun;Yong Beom Cho;Yoon Ah Park;Jung Wook Huh;Jung Kyong Shin;Dae Hee Pyo;Hyekyung Hong;Hae-Ock Lee;Woong-Yang Park;Jin Ok Yang;Young-Joon Kim
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.110-115
    • /
    • 2024
  • Alterations in DNA methylation play an important pathophysiological role in the development and progression of colorectal cancer. We comprehensively profiled DNA methylation alterations in 165 Korean patients with colorectal cancer (CRC), and conducted an in-depth investigation of cancer-specific methylation patterns. Our analysis of the tumor samples revealed a significant presence of hypomethylated probes, primarily within the gene body regions; few hypermethylated sites were observed, which were mostly enriched in promoter-like and CpG island regions. The CpG Island Methylator Phenotype-High (CIMP-H) exhibited notable enrichment of microsatellite instability-high (MSI-H). Additionally, our findings indicated a significant correlation between methylation of the MLH1 gene and MSI-H status. Furthermore, we found that the CIMP-H had a higher tendency to affect the right-side of the colon tissues and was slightly more prevalent among older patients. Through our methylome profile analysis, we successfully verified the methylation patterns and clinical characteristics of Korean patients with CRC. This valuable dataset lays a strong foundation for exploring novel molecular insights and potential therapeutic targets for the treatment of CRC.