• Title/Summary/Keyword: Method of displacement

검색결과 4,852건 처리시간 0.028초

Multipoint variable generalized displacement methods: Novel nonlinear solution schemes in structural mechanics

  • Maghami, Ali;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.135-151
    • /
    • 2022
  • The generalized displacement method is a nonlinear solution scheme that follows the equilibrium path of the structure based on the development of the generalized displacement. This method traces the path uniformly with a constant amount of generalized displacement. In this article, we first develop higher-order generalized displacement methods based on multi-point techniques. According to the concept of generalized stiffness, a relation is proposed to adjust the generalized displacement during the path-following. This formulation provides the possibility to change the amount of generalized displacement along the path due to changes in generalized stiffness. We, then, introduce higher-order algorithms of variable generalized displacement method using multi-point methods. Finally, we demonstrate with numerical examples that the presented algorithms, including multi-point generalized displacement methods and multi-point variable generalized displacement methods, are capable of following the equilibrium path. A comparison with the arc length method, generalized displacement method, and multi-point arc-length methods illustrates that the adjustment of generalized displacement significantly reduces the number of steps during the path-following. We also demonstrate that the application of multi-point methods reduces the number of iterations.

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

Pose-graph optimized displacement estimation for structural displacement monitoring

  • Lee, Donghwa;Jeon, Haemin;Myung, Hyun
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.943-960
    • /
    • 2014
  • A visually servoed paired structured light system (ViSP) was recently proposed as a novel estimation method of the 6-DOF (Degree-Of-Freedom) relative displacement in civil structures. In order to apply the ViSP to massive structures, multiple ViSP modules should be installed in a cascaded manner. In this configuration, the estimation errors are propagated through the ViSP modules. In order to resolve this problem, a displacement estimation error back-propagation (DEEP) method was proposed. However, the DEEP method has some disadvantages: the displacement range of each ViSP module must be constrained and displacement errors are corrected sequentially, and thus the entire estimation errors are not considered concurrently. To address this problem, a pose-graph optimized displacement estimation (PODE) method is proposed in this paper. The PODE method is based on a graph-based optimization technique that considers entire errors at the same time. Moreover, this method does not require any constraints on the movement of the ViSP modules. Simulations and experiments are conducted to validate the performance of the proposed method. The results show that the PODE method reduces the propagation errors in comparison with a previous work.

Application of Phase-Shifting Method in Speckle Interferomtery to Measurement of Micro-Scale Displacement

  • Baek, Tae-Hyun;Kim, Myung-Soo
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.162-168
    • /
    • 2006
  • Speckle interferometry with phase-shifting method has been applied to measurement of micro-scale displacement through optical signal processing. Four-step phase-shifting method by PZT is used to measure out-of-plane displacement in spot-welded cantilever and results of optical experiments are comparable to those of FEM. Phase-shifting method using Fourier transform by PZT is applied to measurement of in-plane displacement on rectangular steel plate with a circular hole. The results of optical experiment agree well with theoretical calculation. New phase-shifting method in speckle interferometry has been implemented with a quarter wave plate. In-plane displacement of specimen is measured by the new phase-shifting method. Results of optical experiment show that the quarter wave plate can be used for phase-shifting method that is cheap and easy to use in speckle interferometry.

속도시간이력을 이용한 변위 추정 알고리즘에 관한 실험적 검증 (Experimental Verification of Displacement Estimation Algorithm using Velocity Time History)

  • 조성호;전준창;황선근;이희현
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.99-105
    • /
    • 2015
  • In this study, displacement estimation algorithm, which is not requiring an absolute reference point unlike the conventional displacement measurement method, is developed using the geophone. To estimate displacement of the bridge, measured velocity time signal is integrated in the frequency domain. And, the estimated displacement is compared with the measured result using a conventional method. Based on the dynamic field test results, it was found that the estimated displacement by the present algorithm is similar to that of a conventional method. The displacement estimation algorithm proposed in this paper can be effectively applied to measure the displacement of a structure, which is difficult to install a displacement transducer at the fixed point.

교량구조물의 측방이동 측정방법에 관한 연구 (The Measurement Method of Lateral Displacement in Bridge Abutment.)

  • 장용채
    • 한국항만학회지
    • /
    • 제14권1호
    • /
    • pp.115-124
    • /
    • 2000
  • This study is a suggest a measurement method of lateral displacement, which can be used to judge the stability of bridge abutment on soil undergoing lateral movement. The abutment of bridge on soft foundation makes lateral movement due to the settlement of back fill and lateral flow. To measure the displacement of such a abutment, there are a lot of indirect method for measurement such as survey of leveling or inclinometer gauge around the abutment. But all of them are not sufficient to confirm the ground behavior and measure the exact lateral behavior of structure. As making the structure and pile cooperatively by measuring the movement of lateral displacement, for measuring the abutment displacement precisely by using the inclinometer. In this work, we try to suggest efficient measuring method of abutment displacement and its application.

  • PDF

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.

역량스펙트럼 방법과 수정변위계수법을 이용한 다경간 교량의 내진성능 평가 (Seismic Performance Evaluation of Multi-Span Bridges using CSM and modified DCM)

  • 남왕현;송종걸;정영화
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.119-126
    • /
    • 2006
  • Capacity spectrum method(CSM) of ATC-40(1996) and displacement coefficient method(DCM)of FEMA-273(1997) are applied to evaluate the seismic performance of bridges. In this study, equivalent response is obtained from nonlinear static analysis for the 3spans continues bridge and nonlinear maximum displacement response is calculated using CSM and DCM. Nonlinear maximum displacement response of DCM is larger than this of CSM. It is method that DCM can evaluate target displacement and ductility of structural to be easy and simple, but tend to overestimate the maximum displacement response. Therefore, this method is mainly used at preparation design level to evaluate the structural response. It is not desirable to evaluate the seismic performance using DCM.

  • PDF

수직전력구 내진설계를 위한 응답변위 산정에 대한 사례 조사 (Case Study of Estimate the Response Displacement for the Seismic Design of Shaft Cable Tunnel)

  • 김용민;정상섬;김영호;권영기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.634-639
    • /
    • 2009
  • The response displacement method is the most frequently used method for the seismic design of underground structures. Underground structures under seismic loading will tend to deform with the surrounding ground, and thus the structure is designed to accommodate the free-field deformation without loss of its structural integrity. This method is pseudo-static method, and response displacement of surrounding ground are most important steps. In this study, the single cosine method and the equivalent linear analysis are applied to estimate the response displacement of the real sites, and the results of the each method are compared. Response analysis was also performed with respect to bedrock depth. As a results, Equivalent linear analysis result was larger than single cosine method. And, the relative displacement becomes lager according to depth of the bedrock.

  • PDF

라이다를 이용한 고층 건물의 변위 계측 기법에 관한 연구 (A Study on the Displacement Measuring Method of High-rise Buildingas using LiDAR)

  • 이홍민;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.151-158
    • /
    • 2006
  • Structural health monitoring is concerned with the safety and serviceability of the users of structures, especially for the case of building structures and infrastructures. When considering the safety of a structure, the maximum stress in a member due to live load, earthquake, wind, or other unexpected loadings must be checked not to exceed the stress specified in a code. It will not fail at yield, excessively large displacements will deteriorate the serviceability of a structure. To guarantee the safety and serviceability of structures, the maximum displacement in a structures must be monitored because actual displacement is a direct assessment index on its stiffness. However, no practical method has been reported to monitor the displacement, especially for the case of displacement of high-rise buildings because of not to easy accessive. In this paper, it is studied displacement measuring method of high-rise buildings using LiDAR The method is evaluated by analyzing accuracy of measured displacements for existing building.

  • PDF