• Title/Summary/Keyword: Methionine Supplementation

Search Result 142, Processing Time 0.021 seconds

Changes in growth performance, carcass characteristics, and meat properties of late fattening Hanwoo steers according to supplementation of rumen protected methionine and lysine

  • Ahn, Jun-Sang;Kwon, Eung-Gi;Shin, Jong-Suh;Kim, Min-Ji;Son, Gi-Hwal;Choi, Chang-Six;Lee, Chang-Woo;Park, Joong-Kook;Park, Byung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.671-682
    • /
    • 2019
  • This study was conducted to evaluate the effects of rumen-protected methionine and lysine (RPML) on the growth performance, carcass characteristics, and meat properties of Hanwoo steers. Fourteen late fattening steers were randomly assigned to either the control (commercial concentrate + rice straw) or the treatment (commercial concentrate + rice straw + 20 g of RPML/head/day) group. The average daily gain (ADG) and feed conversion ratio (FCR) were not different between the treatment and control group. The rib eye area was slightly but not significantly higher in the treatment group than in the control group. The back fat thickness decreased with the RPML supplementation, although not significantly, and the appearance of yield C grade was lower in the treatment group than in the control group. The marbling score was similar between the control and treatment groups. The supplementation of RPML had no effect on the physicochemical compositions, myoglobin values, Commission Internationale de $l^{\prime}{\acute{E}}clairage$ (CIE) color values, fatty acid composition, and thiobarbituric acid reactive substances (TBARS) values in the longissimus muscle. Thus, the supplementation of RPML does not any negative effects on the growth performance, carcass characteristics, and meat properties of late fattening Hanwoo steers.

Effects of Methionine Supplemented to Soy Milk on Growth and Acid Production by Lactic Acid Bacteria (두유(豆乳)에 첨가된 Methionine이 유산균의 생육과 산생성에 미치는 영향)

  • Ko, Young-Tae
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 1987
  • Soy milk prepared from soy protein concentrate was fermented with each of the following lactic acid bacteria: Lactobacillus acidophilus KFCC 12731, L. acidophilus AKU 1122, L. bulgaricus, L. casei, Leuconostoc mesenteroides and Streptococcus lactis. The effects of methionine supple mented to soy milk on the growth and acid production by each organism. were investigated. L-methionine reduced the acid production by two strains of L. acidophilus while it had no apparent. effects on the other test cultures. The inhibitory effects of L-methionine on L. acidophilus KFCC 12731 was greater than on L. acidophilus AKU 1122. The acid production by L. acidophilus KFCC 12731 was also reduced substantially by DL-methionine supplemented to soy milk while it was not affected by D-methionine. Supplementation of L-cysteine to soy milk resulted in slight reduction of acid production by L. acido philus KFCC 12731.

  • PDF

Immunological Responses of Broiler Chicks Can Be Modulated by Dietary Supplementation of Zinc-methionine in Place of Inorganic Zinc Sources

  • Moghaddam, Hasan Nassiri;Jahanian, Rahman
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.396-403
    • /
    • 2009
  • Male broiler chicks were fed graded levels of organic zinc (zinc-methionine) supplementation to investigate the effects of partial or complete substitution of the organic zinc source for inorganic ones on the development of lymphoid organs and immunological responses. A total of 450 day-old male broilers were distributed into groups of 10 chicks and randomly assigned to nine experimental diets during a 42-day feeding trial. Dietary treatments consisted of two basal diets supplemented with 40 mg/kg added zinc as feed-grade Zn sulfate or Zn oxide in which, Zn was replaced with that provided from zinc-methionine (ZnMet) complex at the levels of 25, 50, 75 or 100%. Two randomly-selected birds from each pen replicate were bled and then slaughtered by cervical cutting on the final day of the trial to measure leukocyte subpopulations and relative weights of lymphoid organs. Among lymphoid organs, only thymus weight was affected (p<0.05) by dietary treatments. The sulfate-supplemented birds were heavier (p<0.01) in relative weight of thymus than oxide-supplemented birds. The 10 days of age-assessed cutaneous hypersensivity reaction was stronger in chicks fed ZnMet-containing diets. Dietary ZnMet supplementation caused (p<0.05) an increase in proportion of lymphocytes and consequently a decrease in heterophil to lymphocyte ratio. Diet fortification by zinc-methionine complex increased (p<0.01) Newcastle antibody titer at 19 days of age. Also, a similar response was observed in antibody titers at 6 and 12 d after infectious bronchitis vaccine administration. There was no significant effect of replacement of dietary zinc on antibody titer against infectious bursal disease virus (IBDV) at the 6th d post-vaccine inoculation; however, at d 12 after vaccination, ZnMet-fortified diets improved antibody titer against IBDV. Although dietary inclusion of ZnMet had no marked effect on primary antibody titer against sheep erythrocytes, effective responses were observed during secondary reaction from the viewpoint of both total antibody and immunoglobulin Y (IgY) titers. From the present findings, it can be concluded that dietary supplementation with organic zinc improves both cellular and humoral immune responses. It is necessary to replace 75% of supplemental inorganic zinc with organic ZnMet complex to achieve the optimum immunological responses in broiler chicks.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Effects of concentrate level and chromium-methionine supplementation on the performance, nutrient digestibility, rumen fermentation, blood metabolites, and meat quality of Tan lambs

  • Jin, Yadong;Zhou, Yuxiang
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.677-689
    • /
    • 2022
  • Objective: This study was conducted to evaluate the effects of concentrate level and chromium-methionine (Cr-Met) supplementation on the growth performance, carcass characteristics, meat quality, and fatty acid composition of Tan lambs. Methods: Sixty male Tan lambs (21±1.23 kg body weight) fed a finishing diet (concentrate-to-forage ratio: 35:65 [LC group] or 55:45 [HC group]) with daily Cr-Met supplementation (0, 0.75, or 1.50 g) were used in a completely randomized design with a 2×3 factorial arrangement of treatments. Results: Lambs from the HC group had higher average daily gain, dry matter (DM) digestibility, dressing percentages, leg proportions, intramuscular fat (IMF) contents, and saturated fatty acid levels, but lower feed conversion ratios, globulin (GLB) and total protein (TP) concentrations, shear force, and monounsaturated fatty acid (MUFA) levels (all p<0.05). Cr-Met supplementation increased the DM digestibility, GLB and TP concentrations, rack and loin percentages, and cooking loss, but decreased the IMF contents and leg proportions (all p<0.05). Cr-Met supplementation at 0.75 g/d increased the conjugated linoleic acid (CLA) content in both the HC and LC groups (p<0.01). Significant interactions between the concentrate level and Cr-Met dosage were observed for MUFA (p<0.01) and polyunsaturated fatty acid (PUFA) (p<0.01) levels. Meat from the lambs fed an unsupplemented LC diet presented the highest PUFA and MUFA levels (p<0.01). However, the MUFA and PUFA levels decreased significantly with increasing Cr-Met supplementation levels in the LC group (p<0.01), whereas the opposite trend was seen in the HC group. Conclusion: The HC diet improved the growth performance of Tan lambs, increased their profitability by increasing leg and rack joint proportions, and improved meat quality by promoting an IMF content that was more visibly acceptable to consumers. Cr-Met supplementation at 0.75 g/d in a HC diet was the best choice and may be economically beneficial.

Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1126-1141
    • /
    • 2021
  • Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42℃ for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 ㎍/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 ㎍/mL (MET70, 70 ㎍/mL of Met), 20 ㎍/mL (MET80, 80 ㎍/mL of Met), and 30 ㎍/mL (MET90,90 ㎍/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 ㎍/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 ㎍/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 ㎍/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.

EFFECTS OF LYSINE OR RUMINALLY PROTECTED LYSINE ADMINISTRATION ON NITROGEN UTILIZATION IN GOATS FED A DIET SUPPLEMENTED WITH RUMINALLY PROTECTED METHIONINE

  • Muramatsu, T.;Tsutsumi, K.;Hatano, T.;Hattori, M.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.325-330
    • /
    • 1993
  • The objectives of the present study were to investigate whether or not dietary lysine addition could improve N balance of female Japanese Saanen goats at 15 to 32 months of age, weighing 31 to 40 kg, fed on a wheat bran-hay cube diet supplemented with methionine, and whether or not ruminally protected lysine supplementation could give as good an N balance performance as lysine in the presence of ruminally protected methionine when given orally to the goats. It was considered from changes in N balance and N utilization that the first-and second-limiting amino acids in the diet were methionine and lysine respectively, under the present experimental conditions. The ruminally protected lysine in addition to the ruminally protected methionine gave no improvement in N balance and N utilization compared with the ruminally protected methionine alone, suggesting that the ruminally protected lysine used in the present study was not effectively utilized by the goats.

Effect of Methionine Supplementation on Glutathione Peroxidase Activity in Young and Old Murine Tissues (성장기의 쥐와 늙은 쥐 조직의 Glutathione Peroxidase 활성에 대한 Methionine 투여의 효과)

  • Cha-Kwon Chung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.429-435
    • /
    • 1994
  • The effect of methionine (Met) supplementation on glutathione peroxidase(GSHPx) activity in young and 14 month-old rat and mice was investigated. GSHPx activity was more enhanced by methionine supplementation in young rats when selenium (Se) was given as selenite than given in the form of selenomethione (Se-Met). However, GSHPx activity was not influenced by Met supplementation in the old rats. When diets were low in Se, the biopotency of ht eenzyme by Met was facilitated. No significant differences in GSHPx activity was observed with Met supplement in growing mice when Met was given 0.3% and 0.8% iin the diet at high levels of Se (2 ppm). The peak GSHPx in liver and kidney occurred at day 18, thereafter it decreased. Particularly, the liver GSHPx at day 18 increased 4.2 times than that at day 4 by 0.5% Met supplementation, while the unsupplemented group remained only 2.5 times increase. It is considered that in some tissues Met requirement may be met by Se-Met when rats were fed a diet suboptimal in Met. In addition, at lower levels of Se the utilization of Se is more enhanced by Met than at higher levels of dietary Se. Therefore, GSHPx activity may be influenced greatly by Met status along with dietary Se.

  • PDF

Higher concentrations of folic acid reduced the dietary requirements of supplemental methionine for commercial broilers

  • S. V. Rama Rao;M. V. L. N. Raju;D. Nagalakshmi;T. Srilatha;S. S. Paul;B. Prakash;A. Kannan
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.875-882
    • /
    • 2024
  • Objective: An experiment was conducted to study the effect of supplementing DL methionine (DL Met) at graded concentrations on performance, carcass variables, immune responses and antioxidant variables in broiler chicken fed folic acid (FA) fortified (4 mg/kg) low-methionine diet. Methods: A basal diet (BD) without supplemental DL Met, but with higher level (4 mg/kg) of FA and a control diet (CD) with the recommended concentration of methionine (Met) were prepared. The BD was supplemented with DL Met at graded concentrations (0%, 10%, 20%, 30%, 40%, and 50% supplemental DL Met of CD). Each diet was fed ad libitum to 10 replicates of 5 broiler male chicks in each from 1 to 42 d of age. Results: Body weight gain (BWG) reduced, and feed conversion ratio (FCR) increased in broilers fed low-Met BD. At 30% and 20% inclusion of DL met, the BWG and FCR, respectively were similar to those fed the CD. Similarly, supplementation of 10% DL Met to the BD significantly increased ready to cook meat yield and breast meat weight, which were similar to those of the CD fed broilers. Lipid peroxidation reduced, the activity of antioxidant enzymes (GSHPx and GSHRx) in serum increased and lymphocyte proliferation increased with increased supplemental DL Met level in the BD. The concentrations of total protein and albumin in serum increased with DL Met supplementation to the BD. Conclusion: Based on the data, it can be concluded that supplemental Met can be reduced to less than 50% in broiler chicken diets (4.40, 3.94, and 3.39 g/kg, respectively in pre-starter, starter and finisher phases) containing 4 mg/kg FA.

Effects of Dietary Zinc Supplements on Growth, Feed Efficiency, Organ Weight, Blood Biochemical Profiles, and Activity of Digestive Enzymes in Growing Korean Native Chicks (아연 보충급여에 따른 한국재래계의 성장, 사료이용성, 장기무게, 혈액생화학적 성상, 장기무게 및 소화효소 활성도에 미치는 영향)

  • Jeon, Dong-Gyung;Kim, Min-Jeong;Yoon, Il-Gyu;Ahn, Ho-Sung;Moon, Eun-Seo;Sohn, Sea-Hwan;Lim, Yong;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.117-125
    • /
    • 2019
  • The aim of the study was to investigate the effects of dietary supplementation of zinc (Zn) sources (zinc oxide and Zn-methionine) on performance, organ weights, blood biochemical profiles, and digestive enzymes of the pancreas and small intestine in Korean native chicks (KNC). A total of 144 KNC (n=6) were fed a basal diet (CON, 100 ppm of Zn), a basal diet supplemented with 50 ppm of Zn with ZnO (ZNO), or a basal diet supplemented with 50 ppm of Zn with Zn-methionine (ZMT) for 28 days. There was no significant difference in body weight, gain, feed intake, and feed conversion ratio among the three groups. The relative weights of the liver, spleen, and intestinal mucosa were unaffected by the dietary source of Zn, whereas pancreas weight in the ZNO group decreased (P<0.05) compared with that in the CON and ZMT groups. Blood biochemical components including aspartate aminotransferase, and alanine aminotransferase were unaffected by dietary Zn supplementation. Pancreatic trypsin activity in the ZNO and ZMT groups was significantly (P<0.05) enhanced compared with that in the CON group. However, the activities of ${\alpha}$-amylase and carboxypeptidase A were not altered by dietary Zn supplementation. The activities of maltase and sucrase were unchanged, whereas the activity of leucine aminopeptidase tended (P=0.08) to be increased by dietary Zn supplementation. In conclusion, the supplementation with 50 ppm of ZnO or Zn-methionine resulted in an activation of protein digestive enzymes in the pancreas and small intestine without affecting animal performance in KNC.