• Title/Summary/Keyword: Methionine Supplementation

Search Result 142, Processing Time 0.032 seconds

EFFECTS ON EATING AND RUMINATION BEHAVIOUR IN SHEEP OF FORMIC ACID AND FORMALDEHYDE TREATMENT AND METHIONINE-SUPPLEMENTATION TO LADINO CLOVER FIBROUS RESIDUE SILAGE

  • Fujihara, T.;Ichinohe, T.;Nakao, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.5
    • /
    • pp.477-480
    • /
    • 1995
  • The effects of formic acid and formaldehyde treatment and methionine supplementation to ladino clover fibrous residue silage on eating and rumination behaviour were studied in sheep. From the ladino clover fibrous residue, two silage were prepared, either untreated or treated with formic acid and formaldehyde. Four experimental diets: untreated silage, treated silage, untreated silage with supplementation of methionine and treated silage with supplementation of methionine, were offered to four sheep at a restricted level of DM intake (2% of BW/d) twice daily in a two-way layout design. Methionine supplementation with the treated silage significantly (p < 0.05) reduced daily time spent eating, and consequently, markedly increased rate of eating. However, there was little effect of methionine supplementation on the daily time spent eating and eating rate for sheep offered untreated silage. Methionine supplementation with the treated silage reduced daily time spent ruminating, although the same effect was not observed for untreated silage. The rumination index (time spent ruminating/100 g DM eaten) was remarkably smaller (p < 0.05) with methionine supplement in feeding treated silage, although it did not differ for sheep offered untreated silage. There were no clear effect of methionine supplementation on the rumination efficiency (i.e. number of chews/bolus, bolus time and rumination chewing rate) both feeding untreated silage and treated silage.

Effects of Dietary Methionine and Folate Supplementation in Ethanol-Fed Rats

  • Mun, Ju-Ae;Min, Hye-Sun
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Chronic alcohol consumption is associated with perturbation of hepatic metabolism of sulphur-containing amino acid. The goal of present study was to evaluate the influence of dietary supplementation of methionine or folate to chronically ethanol-fed mts on the metabolism of sulfur-containing amino acids and one-carbon metabolism. Sprague-Dawley male mts were fed Lieber-Decarli liquid diet with 0% ethanol (control), 36% ethanol (E), 36% ethanol combined with methionine supplement (EM) or folate supplement (EF) for 8 weeks. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma folate and homocysteine (Hcy), urinary excretion of folate and formiminoglutamate were investigated after feeding experimental diets. Growth was retarded by 36% ethanol consupmtion (E, EM and EF) (p<0.01). Liver total fat (p<0.05) and plasma ALT (P<0.01) were increased by methionine supplementation (EM), implicating fatty liver and liver injury. Liver folate was increased slightly by folate supplementation (EF) (p=0.077). Urinary folate loss was increased 2.3 fold by ethanol consumption (E) and 17.2 fold by folate supplementation (EF), while decreased by methionine supplementation (EM) (p<0.000l). Plasma Hcy was increased 1.9 fold by methionine supplementation (EM) in ethanol-fed mts (p<0.05), which was related with decreased methionine synthase activity (p<0.05). Hepatic SAM/SAH ratio was depressed by methionine supplementation in ethanol-fed mts (EM) (p<0.05). Urinary formininoglutamate (Figlu) excretion after histidine loading was increased by ethanol ingestion and reduced by methionine supplementation (p<0.00l). Based on these data, methionine supplementation appears to accelerate histidine oxidation. In conclusion, dietary supplementation of methionine to ethanol-fed mts exacerbates alcoholic liver injury possibly by complicating sulphur-containing amino acid metabolism, as while it may have beneficial effects on folate and histidine metabolism.

Effect of Isolated Soyprotein Supplemented with DL- Methionine on the Growth, Metabolism and Body Composition in Albino Rats (대두단백질(大豆蛋白質)에 DL-Methionine 의 보충(補充)이 흰쥐의 성장(成長), 체내(體內) 대사(代謝) 및 체조성(體組成)에 미치는 영향(影響))

  • Park,, Yaung-Ja;Han, In-Kyu
    • Journal of Nutrition and Health
    • /
    • v.17 no.2
    • /
    • pp.94-100
    • /
    • 1984
  • The effect of methionine supplementation to the isolated soyprotein(ISP) diet on the growth, body metabolism and composition of the Albino male rats was studied. Three levels(0.3,0.6 and 0.9%) of methionine were supplemented to the ISP diet with the constant levels of energy and protein of 3,600 kcal/kg and 20%, respectively. The body weight and weight gain of the growing rats were significantly increased by 0.3% methionine supplementation to the ISP diet compared to the ISP diet(P< 0.05).The effects of methionine supplementation to the ISP diet tended to be larger with increasing of the level of methionine supplementation, 0.6 and 0.9%, were statistically insignificant. Food and gross energy intake of growing rats fed the ISP diet or the ISP supplemented with methionine diet were lower than those fed the casein diet(P< 0.05). FER and PER of all the methionine supplemented diets were higher than those of the ISP or casein diet (P< 0.05) without significant differences among the supplementation levels of methionine to the diets. The weight gain of adult rats fed 0.9% methionine supplemented ISP diet were higher than those of the other treatments with significant difference. The effects of methionine supplementation to the ISP diet on the protein digestibility, BV, NPU, N-balance, N-retention, and body and liver compositions were not significant.

  • PDF

The Effects of DL-methionine and DL-methionine Hydroxy Analogue on Growth Performance, Contents of Serum Amino Acids and Activities of Digestive Proteases in Broilers

  • Lu, J.J.;Huang, C.W.;Chou, R.G.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.714-718
    • /
    • 2003
  • This study was conducted to determine the effect of DL-methionine (Met) and DL-methionine hydroxy analogue (MHA) supplementation on the growth performance, contents of serum amino acids and activities of digestive protease in broiler chicks from 0 to 3 weeks old . There were three treatments in this study: (1) control (basal diet), (2) 0.24% Met supplementation and (3) 0.368% MHA supplementation. The results showed that Met and MHA supplementation did not significantly (p>0.05) improve feed efficiency and body weight gain for broilers from 0-1, 0-2 and 0-3 weeks of age. The serum levels of homocystine, methionine and taurine were significantly (p<0.05) higher with supplementation of Met or MHA than with control. The pepsin activity of proventriculus was increased with (p<0.05) Met supplementation at 21 days of age and with MHA supplementation at 7 and 14 days of age. The trypsin activity was also increased (p<0.05) with MHA supplementation at 7 days of age. The chymotrypsin activity in pancreas and the dipeptidase activity in small intestinal mucosa and content were not affected (p>0.05) by Met or MHA supplementation.

Dietary Chromium-methionine Chelate Supplementation and Animal Performance

  • Ohh, Sang Jip;Lee, Joon Yeop
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.898-907
    • /
    • 2005
  • Chromium has emerged as an essential trace mineral in nutrition. However, it readily causes toxicity because of slightly excessive dose and/or form of chromium supplement. Therefore, developing a noble form of chromium supplement which is capable of not only an increased availability but also a reduced toxicity has been a critical issue in chromium nutrition. Chromium-methionine chelate has been, so far, one of the latest developments in its kind. Although not much information is available for the chromium-methionine chelate, especially in view of animal performances upon dietary supplementation, several studies indicated chromium methionine chelate could be effective to improve meat quality by increasing muscle mass but decreasing body fat. Highly-graded beef was produced by dietary chromium methionine supplementation during fattening stage of Korean native steers. Body muscle was increased in replace of decreasing body fat in both pig and rat that were dietary supplemented with chromium methionine chelate. However, a pig farm study did not show any significant improvement of body gain upon supplementation of chromium methionine. Immune responses of pig and rat were not always dependent upon chromium form but were varied by species. These results suggest there could be a different mode of responses due to species as well as onset time of dietary supplementation of chromium methionine. It is still early to conclude the bio-efficacy of chromium methionine chelate presumably due to its recent appearance into the field. But the chelate is certainly worth more application to animal since it certainly reduced the application level of dietary chromium.

Effect of Dietary Methionine on Lipid Peroxidation and Hepatic Ultrastructural Changes in Rat (식이중의 Methionine이 흰쥐의 체내 지질과산화와 간 미세구조에 미치는 영향)

  • Seo, Jung-Sook;Yang, Kyung-Mi;Park, Won-Hark;Chung, Hyeung-Jae;Lee, Yong-Deok
    • Applied Microscopy
    • /
    • v.21 no.1
    • /
    • pp.27-45
    • /
    • 1991
  • To study the effects of dietry methionine level on lipid peroxidation of rats, rats were fed vitamin E, selenium and methionine - deficient diet or the same diet supplemented with various levels(0.3%, 0.6%, 0.9%) of methionine for 6 weeks. The biochemincal and mophological changes in the rat liver were investigated. Lipid peroxide levels in plasma and hepatic mitochondrial fraction of MF rats were more increased than those of control rats. However, supplementation with 0.6% methionine modified this increment. Catalase activity was decreased in hepatic mitochondrial fraction from rats fed MF diet. Methionine supplementation did not induce this enzyme. The ultrastructural evidence for lipid peroxidation was found in plasma membranes facing sinusoids. The most striking changes in including disruption and loss of microvilli and development of numerous lipid droplets occurred in rats fed MF diet. These changes were not effectively prevented by the same diet supplemented with 0.3% or 0.9% methionine, but supplementation with 0.6% methionine modulated more or less the changes.

  • PDF

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

Effects of Dietary Supplementation of Copper Chelates in the Form of Methionine, Chitosan and Yeast in Laying Hens

  • Lim, H.S.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1174-1178
    • /
    • 2006
  • An experiment was conducted to investigate the effects of dietary supplementation of copper chelates in the form of methionine, chitosan and yeast on the performance of laying hens. Four hundred ISA Brown layers, 84 wks old, were assigned to 4 treatments: control, 100 ppm Cu in methionine chelate (Met-Cu), 100 ppm Cu as chitosan chelate (Chitosan-Cu) and 100 ppm Cu as yeast chelate (Yeast-Cu). Each treatment had five replicates of 20 hens. Hen-day and hen-housed egg production and egg weight were significantly (p<0.05) increased by Met-Cu supplementation. The increase by Chitosan-Cu and Yeast-Cu supplementation was not significant. Contrast of the control vs. Cu chelates showed egg weight was significantly (p<0.05) increased by Cu chelate supplementation. Soft-shell egg production was significantly (p<0.05) reduced by supplementation of Cu chelates. Met-Cu treatment showed the lowest incidence of soft egg production. Gizzard erosion index was increased by Cu chelate supplementation. Crude fat in liver, total cholesterol in yolk and Cu content in liver and yolk were not significantly influenced by Cu chelate supplementation. It was concluded that dietary supplementation of 100 ppm Cu as Met-Cu significantly increased egg production and egg weight. Cu-Met chelate was also effective in reducing soft-shell egg production but increased gizzard erosion index.

Effect of Methionine Supplementation on Performance and Carcass Characteristics of Awassi Ram Lambs Fed Finishing Diets

  • Obeidat, Belal S.;Abdullah, Abdullah Y.;Awawdeh, Mofleh S.;Kridli, Rami T.;Titi, Hosam H.;Qudsieh, Rasha I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.831-837
    • /
    • 2008
  • The objective of this study was to evaluate the effects of ruminally-protected methionine supplementation (0, 7, or 14 g/head/d) on nutrient intake, digestibility, growth performance, carcass, and meat characteristics of Awassi ram lambs fed finishing diets. Twenty four Awassi ram lambs ($16.8{\pm}1.17kg$ body weight) were randomly assigned to 3 treatment diets (8 lambs/treatment) and housed in individual pens. Lambs were given an adaptation period of 7 days before the intensive feeding period that lasted for 86 days. On day 74 of the trial, a digestibility experiment was performed. At the end of the trial (d 86), all lambs were slaughtered to evaluate carcass characteristics and meat quality. Increasing the level of methionine supplementation did not improve (p>0.05) performance nor feed conversion ratio. Nutrient intake and digestibilities were not influenced (p>0.05) by methionine supplementation. There were no differences in final weight, hot and cold carcass weights, dressing percentages or any of the measured non-carcass components. Tissues and fat depth measurements together with all meat quality attributes measured on longissimus muscle of the loin cut were not affected by methionine supplementation. The only meat quality parameters affected were redness (a*) and the hue angle being higher for the control group (p<0.05). These results suggest that methionine supplementation is not likely to produce any production benefits in nutrient digestibilities, performance or carcass characteristics of ram lambs fed a high performance diet.

Effects of Dietary Methionine Level on Lipid Peroxidation and Hepatic Morphology in Rat (식이중의 Methionine첨가수준이 흰쥐의 체내 지질 과산화와 간조직 형태에 미치는 영향)

  • Yang, Kyung-Mi;Cho, Soo-Yeul;Seo, Jung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.4
    • /
    • pp.376-383
    • /
    • 1988
  • The effect of dietary methionine level on lipid peroxidation of rats was studied. Rats were fed vitamin E- selenium- deficient diet or diet supplemented with various levels (0.3, 0.6, 0.9%) of methionine. In rat fed MF diet, body weight gain and feed efficiency ratio were decreased compared with those of control rats, but reversed by supplementation with 0.3 and 0.6% methionine. Lipid peroxide levels in plasma and hepatic mitochondrial fraction of MF group rats were significantly higher than those of control rats. However, supplementation with 0.6% methionine modified this increment. GSH-Px activity was decrased to varying degrees in erythrocyte and hepatic mitochondrial fraction from rats fed MF diet. Methionine supplementation did not affect induction of this enzyme activity. Examination of hepatocytes by electronmicroscopy showed that Influence of vitamin E, selenium, and methionine deficiency was mainly characterized by lipid droplets, swollen mitochondria and microvilli destruction. Supplementation with various levels of dietary methionine modified these changes to some extent. The results of this experiment indicated that MF diet causes significant change in lipid peroxide level, GSH-Px activity and morphology of rats which these changes may lessen by supplementation with 0.6% methionine.

  • PDF