• Title/Summary/Keyword: Methanol insertion

Search Result 6, Processing Time 0.018 seconds

A Study on the Mechanism for Photochemical Insertion of Methanol Into Aryl Ketocarbenes

  • Sung, Dae-Dong;Lee, Jong-Pal;Lee, Yong-Hee;Ryu, Worl-Sun;Ryu, Zoon-Ha
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • The photochemical reaction mechanism has been investigated for methanol insertion into the p-substituted phenylketo carbenes. The triplet spin state of phenyl koto carbene is stabilized by the neighbored carbonyl electrons. When the phenylketo carbene reacts with methanol, the ylied intermediate is formed, then moves to the activated transition state.

  • PDF

Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MPT

  • Ghosh, Suparna;Dhanasingh, Immanuel;Ryu, Jaewon;Kim, Si Wouk;Lee, Sung Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1261-1271
    • /
    • 2020
  • Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+, Ca+, and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.

Chemical Reactivity of Ti+ within Water, Dimethyl Ether, and Methanol Clusters

  • Koo, Young-Mi;An, Hyung-Joon;Yoo, Seoung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.197-204
    • /
    • 2003
  • The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clusters were dominated by the dehydrogenation reaction, which produces $TiO^+(H_2O)_n$ clusters. The mass spectra resulting from the reactions of $Ti^+\;with\;CH_3OCH_3$ clusters exhibit a major sequence of $Ti^+(OCH_3)_m(CH_3OCH_3)_n$ cluster ions, which is attributed to the insertion of $Ti^+$ ion into C-O bond of $CH_3OCH_3$ followed by $CH_3$ elimination. The prevalence of $Ti^+(OCH_3)_m(CH_3OD)_n$ ions in the reaction of $Ti^+\;with\;CH_3OD$ clusters suggests that D elimination via O-D bond insertion is the preferred decomposition pathway. In addition, the results indicate that consecutive insertion reactions by the $Ti^+$ ion occur for up to three precursor molecules. Thus, examination of $Ti^+$ insertion into three different molecules establishes the reactivity order: O-H > C-O > C-H. The experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by cluster size and argon stagnation pressure. The reaction energetics and formation mechanisms of the observed heterocluster ions are also discussed.

Photochemical Generation of Phenylsilylene and Its Chemistry (광분해 반응에 의한 Phenylsilylene의 생성과 그 반응성에 관한 연구)

  • Do Nam Lee;Han Seop Shin;Chang Hwan Kim;Myong Eui Lee
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.757-764
    • /
    • 1993
  • The photochemical precursors, 1,1,1,3,3,3-hexamethyl-2-phenyltrisilane(2) and 2,3-dicarbomethoxy-1,4,5,6,7-pentaphenyl-7-silanorbornadiene(5) were synthesized in the yield of 10% and 73%, respectively. Irradiation of 2 at 254 nm in the presence of triethylsilane gave 1,1,1-triethyl-2-phenyldisilane (6) in 44% yield which was the product of phenylsilylene insertion into the Si-H bond. Irradiation of 2 in the presence of diphenylacetylene gave 1-phenyl-1-silacyclopenta-2,4-diene(4) in 68% yield together with 1,2-diphenyl-1,2-disilacyclohexa-2,5-diene(26%) which were formed from [2+2] addition of the silacyclopropene to diphenylacethylene and formed from dimerization of silacyclopropene, respectively. From the neat photolysis of precursor 2,1,5-dihydrosilanthrene(11), intermolecular C-H insertion product of phenylsilylene and 1,2-diphenyltrisilane(12), Si-H insertion product of phenylsilylene to the precursor were obtained in the yield of 5% and 7%, respectively. In the same experimental condition, both photolyses of 5 in the presence of triethylsilane and methanol showed that the intramolecular 1,5-sigmatropic rearrangement of precursor 5 to give the formation of silylenolether was more favorable process than the generation of phenylsilylene.

  • PDF

Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster (HAN/메탄올 추진제를 사용하는 1 N급 추력기 성능 평가)

  • Lee, Jeongsub;Huh, Jeongmoo;Cho, Sungjune;Kim, Suhyun;Park, Sungjun;Kim, Sukyum;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • The HAN which is an ionic liquid is a non-toxic monopropellant with high storability, and its specific impulse can be increased by blending methanol, thereby it can substitute the hydrazine. The HAN was synthesized by acid-base reaction of hydroxylamine and nitric acid, and the blending ratio of HAN and methanol is 8.2:1. The iridium catalyst was used to decompose the HAN, and 1 N class thruster with shower head type injector having one orifice was used to evaluate the HAN/Methanol propellant. The thermal stability of distributor was increased by using ceramic material to endure the high temperature of product gas. The preheating temperature of catalyst should be $400^{\circ}C$ at least for the complete decomposition. The feeding pressure should be increased to increase the $C^*$ efficiency, thereby the decomposition performance was decreased upstream catalyst, and the performance of thruster was decreased. The fine metal mesh was inserted after the injector to improve the atomization of propellant, thereby it can settle the performance decrease problem. The phenomenon of performance decrease was remarkably improved owing to the insertion of fine metal mesh.