• 제목/요약/키워드: Methane-air combustion

검색결과 194건 처리시간 0.022초

고온촉매연소의 가스터빈 적용에 관한 수치적 연구 (Numerical Study on the Application of High Temperature Catalytic Combustion to a Gas Turbine)

  • 김형만;전호식;장석용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.989-994
    • /
    • 2001
  • Numerical simulations of high temperature catalytic combustion have been performed for the application to a gas turbine combustor. Dependences of inlet temperature and pressure on the distributions of temperature and species concentrations were investigated using plug flow model with detailed homogeneous and heterogeneous chemistries of methane-air mixtures. Honeycomb typecombustor deposited with Pt catalyst of 100mm in length and 26mm in diameter is used. The results show that rapid increase of temperature profile occurs earlier with the increase of inlet temperature and the decrease of inlet pressure. The condition which catalytic combustion is stabilized exists at certain range of inlet temperature and pressure. The state of catalytic combustion is also confirmed by the distributions of species concentration.

  • PDF

Pd/cordierite 촉매상에서 메탄의 연소 특성 고찰 (A Study on the Combustion Characteristics over Pd/cordierite Catalyst)

  • Cho, Won-Ihl;Oh, Young-Sam;Park, Dal-Ryung;Baek, Young-Soon;Pang, Hyo-Sun;Mok, Young-Il
    • 에너지공학
    • /
    • 제6권1호
    • /
    • pp.34-40
    • /
    • 1997
  • 자동차 촉매인 Pd/cordierite 촉매상에서 메탄의 연소시험을 통하여 천연가스 이용기술 활용가능성에 대해서 고찰하였다. 중고온 연소에서 알맞은 비표면적 18.7$m^2$/g 을 갖으며 안정한 구조를 확인하였다. 메탄 연소 반응시 활성화에너지는 19.2 kcal/mol로써 비교적 우수한 활성을 보여주었으며, 메탄 연소 반응의 승온과 온도를 내리면서 촉매의 비활성 특성을 보여주는 활성 히스테리시스 현상을 관찰하였다. Pd/cordierite 촉매상에서 반응온도 $700^{\circ}C$이하에서 공간속도와 공연비를 변화시키면서 메탄 연소특성을 수행하였다.

  • PDF

$CO_2$ 재순환에 의한 순산소 연소와 공기 연소의 화염 특성 비교 (Comparison of the combustion characteristics between air combustion and oxy-combustion with $CO_2$ recirculation)

  • 이승환;허강열
    • 한국연소학회지
    • /
    • 제13권3호
    • /
    • pp.24-32
    • /
    • 2008
  • Steady Laminar Flamelet Model (SLFM) calculation is performed to compare the turbulent combustion characteristics of air combustion and oxy-combustion with $CO_2$ recirculation. Radiative heat loss is considered by the optically thin limit assumption. For more realistic simulation the first-order conditional moment closure(CMC) model is applied to SANDIA PILOTED FLAME D again for the oxidants of air and mixture of $O_2$ and $CO_2$. The chemical kinetic machanism for methane is GRI Mech 3.0. Results show that oxy flames are much more stable than air flames, while comparable stability is maintained with 65% $CO_2$ recirculation. The comparable peak temperature is maintained with 80% $CO_2$ recirculation. Higher the temperature, higher the fractions of intermediate species, CO and OH, due to dissociation.

  • PDF

정적연소기에서의 메탄-공기 혼합기의 연소특성(3) : 배기배출물 (Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(3) : Exhaust Emission)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.1-8
    • /
    • 2004
  • A cylindrical constant volume combustion chamber was used to investigate the exhaust emission characteristics of homogeneous charge, stratified pattern and inhomogeneous charge under various conditions using gas chromatography. In the case of homogeneous charge condition, the $CO_2$ concentration is proportional to excess air ratio and overall charge pressure, the $CO_2$ concentration is proportional to excess air ratio and the UHC concentration is inversely proportional to ignition time and overall charge pressure. In the case of stratified pattern, the RI(rich injection) condition shows better exhaust emission characteristics, especially $CO_2$, than that of HI (homogeneous injection) or LI (lean injection) conditions. In inhomogeneous charge conditions, when initial charge pressure is increased, $CO_2$ and UHC concentration is reduced but $O_2$ concentration is increased. And when the excess air ratio of initial charge mixture is 3.0, UHC and $CO_2$concentration show lowest values.

정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성 (CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber)

  • 김태권;김성훈;장준영
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF

배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발 (Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas)

  • 신은주;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

밀폐 연소실내의 메탄-공기 예혼합기의 연소 및 라디칼 특성에 관한 연구 (1) (A Study on the Characteristics of Methane-Air Premixture Combustion and Combustion Radicals (1))

  • 전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.659-669
    • /
    • 1996
  • To clarify the effects of equivalence ratio, initial pressure and temperature on the flame propagation and radicals characteristics, a series of the experimental study were conducted in a quiescent methane-air premixture using a constant volume chamber. The development of the flame was visualized following the start of ignition using high speed schlieren photo and radical images by intensified CCD camera. Combustion pressure and ion current were recorded simultaneously according to the experimental conditions which were equivalence ratio with 0.7 to 1.2, initial pressure with 0.08 MPa to 0.40 MPa and initial premixture temperature with 3l3.2K to 403.2K. The results showed that the flame speed by ion current and mass fraction burned by combustion pressure characterized the effects of flame propagation very well. And increased combustion duration due to lean combustion condition that was below equivalence ratio, 0.8 caused cycle variation and decreasing the power of engine.

수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향 (Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame)

  • 김한석;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

관내 희박 예혼합 프로판/공기와 메탄/공기 화염의 거동에 관한 실험적 연구 (Experimental Study on the Behaviors of Lean Premixed Flame of Propane/Air and Methane/Air in a Tube)

  • 곽영태;오광철;신현동
    • 한국연소학회지
    • /
    • 제10권2호
    • /
    • pp.35-41
    • /
    • 2005
  • Behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated experimentally varying the mean velocity from 10 to 140 cm/s and the equivalence ratio from 0.45 to 0.8. Behaviors of both flames are divided into five regions of stable, flash-back, tail-out, flickering and vibrating. General characteristics of each region and Le number effect are investigated. Two main instabilities, flickering and vibration, are both unstable but the instability mechanism, the frequency and the amplitude of pressure fluctuation are different. In the edge of the vibrating region, pressure fluctuation repeats generation and extinction. Repeated growth and decrease of the amplitude of pressure fluctuation are explained by Rayleigh#s index.

  • PDF

메탄-공기 예혼합기의 열면점화에 미치는 촉매반응 및 자연대류의 영향 (Effects of Catalytic Reaction and Natural Convection on the Hot Surface Ignition of Methane-Air Mixtures)

  • 김형만;정종수
    • 한국연소학회지
    • /
    • 제2권1호
    • /
    • pp.29-38
    • /
    • 1997
  • In this study, the experimental and numerical investigations of the ignition of methane-air mixtures by a electrically heated wire have been carried out. In order to define the initial condition and make the analysis simple, the following control unit was developed; which heats the wire to the setting temperature in a very short time, and maintains the wire temperature constant until ignition. Experiments with the feedback control have been performed using nickel and platinum wires in normal gravity and microgravity. From experimental results, ignition temperatures in normal gravity are higher than those in microgravity, however, the dependences of ignition temperature on equivalence ratio are not affected by natural convection. Numerical calculations, including catalytic reaction for platinum, have been performed to analyze the experimental results in microgravity. Numerical results show that reactants near platinum wire are consumed by catalytic reaction, therefore, the higher temperature is needed to ignite the mixture with platinum wire.

  • PDF