• Title/Summary/Keyword: Methane recovery

Search Result 112, Processing Time 0.034 seconds

Research on the Methane Recovery from Landfill Gas by Applying Nitrogen Gas Separator Membrane (질소 분리용 막을 이용한 매립가스내 메탄 회수 연구)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.586-591
    • /
    • 2013
  • This experiment was performed to enhance $CH_4$ purity of landfill gas by applying gas separator membrane for purified nitrogen gas production. 1:6 area ratios of $1^{st}$ to $2^{nd}$ membrane module was suitable for $CH_4$ recovery. After separation membrane system was installed, 249 tries were performed. Average permeability for $CH_4$ was 28.4% and for $CO_2$ was 94.3%. This can explain nitrogen gas separator membrane can be applied to collect $CH_4$ from LFG. However, nitrogen permeability only reached up to 16.5%. Therefore, the final purified landfill gas concentration was rounded up to 69.7% for $CH_4$, 4.3% for $CO_2$ and 26.0% for $N_2$. For the high degree of $CH_4$ purity, $N_2$ should be kept at least under 2.0% by controlling air inflow to landfill.

Recent trends in anaerobic membrane bioreactor treatment of domestic wastewater (혐기성 막 생물반응조를 이용한 하수처리의 최근 동향)

  • Shin, Chung-Heon;Bae, Jae-Ho;Kim, Jeong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.529-545
    • /
    • 2013
  • With the increasing concern on climate changes and energy shortage, anaerobic membrane bioreactors (AnMBR) become a promising alternative to aerobic processes for domestic wastewater treatment. Two major advantages of AnMBRs are energy production and sludge reduction. Recently, several different configurations of AnMBRs have been proved to produce high quality effluent at reasonable hydraulic retention time and ambient temperature. One of the major problems of the AnMBR is membrane fouling control, and some solutions are already suggested. Other problems to be solved before the full application of the AnMBR are recovery of dissolved methane, management of residual nutrients and sulfide. Considering the potential advantages and future technology development, AnMBR will become major domestic wastewater treatment process in near future.

Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option

  • Lee, Kwanhyoung;Choi, Oh Kyung;Song, Ji Hyun;Lee, Jae Woo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Methanotrophic denitrification under a non-aerated condition (without external supply of oxygen or air) was investigated in a bioreactor coupled with a membrane diffuser. Batch experiment demonstrated that both methane consumption and nitrogen production rates were not high in the absence of oxygen, but most of the nitrate was reduced into $N_2$ with 88% recovery efficiency. The methane utilized for nitrate reduction was determined at 1.63 mmol $CH_4$/mmol $NO_3{^-}$-N, which was 2.6 times higher than the theoretical value. In spite of no oxygen supply, methanotrophic denitrification was well performed in the bioreactor, due to enhanced mass transfer of the methane by the membrane diffuser and utilization of oxygen remaining in the influent. The denitrification efficiency and specific denitrification rate were 47% and 1.69 mg $NO_3{^-}-N/g\;VSS{\cdot}hr$, respectively, which were slightly lower than for methanotrophic denitrification under an aerobic condition. The average concentration of total organic carbon in the effluent was as low as 2.45 mg/L, which indicates that it can be applicable as a post-denitrification method for the reclamation of secondary wastewater effluent. The dominant fatty acid methyl ester of mixed culture in the bioreactor was $C_{16:1{\omega}7c}$ and $C_{18:1{\omega}7c}$, which was predominantly found in type I and II methanotrophs, respectively. This study presents the potential of methanotrophic denitrification without externally excess oxygen supply as a post-denitrification option for various water treatment or reclamation.

A Study on Gas Hydrate Replacement Method for Organic Methane Recovery in Ocean Sediment (해저 퇴적토 내 유기성 메탄 회수를 위한 가스하이드레이트 치환기법 연구)

  • Shin, Dong Hyung;Park, Dae Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.5-10
    • /
    • 2018
  • In this study, the effect of physico-chemical factors (e.g., pressure, electrolyte, and organic matter) in the gas hydrate deposit on CH4-CO2 replacement process was investigated experimentally. The higher initial pressure during gas injection led the higher reaction rate at the first time, but finally it did not. Electrolytes and organic matter have some effects on reforming process after dissociation of gas hydrate. It is expected that further research using real marine sediments with actual gas hydrate will enable the development of technologies applicable to the characteristics of domestic seabed geology. Ultimately, it is expected that it will be possible to recover and utilize methane as an organic resource through application of domestic gas hydrate deposit in the Ulleung Basin, East Sea.

Saccharomyces cerevisiae Live Cells Decreased In vitro Methane Production in Intestinal Content of Pigs

  • Gong, Y.L.;Liao, X.D.;Liang, J.B.;Jahromi, M.F.;Wang, H.;Cao, Z.;Wu, Y.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.856-863
    • /
    • 2013
  • An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane ($CH_4$) production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress $CH_4$ production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells), control (no live yeast cells) and yeast (YST) supplementation groups (supplemented with live yeast cells, YST1 or YST2). The yeast cultures contained $1.8{\times}10^{10}$ cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc${\times}$Landrace${\times}$Yorkshire pigs, mixed with a phosphate buffer (1:2), and incubated anaerobically at $39^{\circ}C$ for 24 h using 500 mg substrate (dry matter (DM) basis). Total gas and $CH_4$ production decreased (p<0.05) with supplementation of yeast. The methane production reduction potential (MRP) was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD) and total volatile fatty acids (VFA) concentration increased (p<0.05) in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05), but that of acetate decreased (p<0.05), which led to a decreased (p<0.05) acetate: propionate (A: P) ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05) with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05) with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro $CH_4$ production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic bacteria, both of which serve as a competitive pathway for the available H2 resulting in the reduction of methanogenic archaea.

The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux (저열유속에서 상변화를 수반하는 메탄의 유동거동특성)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A liquefied natural gas(LNG) in cryogenic liquid is converted back into gaseous form for distribution to residential and industrial consumers. In this re-gasification process, LNG supplies a plenty of cold thermal energy about $83.7{\times}10^4kJ/kg$. The LNG cold thermal energy is utilized for the re-liquefaction process of cryogenic fluids such as Nitrogen, Hydrogen and Helium, and ice manufacturing process and air-conditioning system in some advanced countries. Therefore, it is also necessary to establish the recovery systems of the LNG cold thermal energy around Incheon, Pyungtaek and Tongyung LNG import terminals in our country. Methane is used as working fluid in this paper, which is the major component of LNG over 85 % by volume, in order to investigate the flow behavior characteristics of LNG with phase change at low heat flux. This paper presents the effects of pipe diameters, pipe inclinations and saturation pressures on the flow boundaries of methane flowing in a cryogenic heat exchanger tube, together with those of nitrogen, propane, R11 and R134a. The outcomes obtained from this theoretical researches are also compared with previous experimental data. It was also found that the effect of pipe inclination on the methane flow boundaries was significant.

Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment (하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술)

  • Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Anaesthetic Tolerance of Juvenile Black Rockfish Sebastess schlegeli, Produced for Wild Stock Enhancement

  • Son, Maeng-Hyun;Park, Min-Woo;Myeong, Jeong-In;Kim, Dae-Jung;Kim, Byoung-Hak;Jo, Q-Tae;Jeon, Im-Gi
    • Ocean and Polar Research
    • /
    • v.23 no.3
    • /
    • pp.285-290
    • /
    • 2001
  • The strength of juvenile black rockfish, Sebastes schlegeli, raised in different hatcheries for wild stock enhancement was evaluated in terms of resistance to an anesthetizing agent, tricaine methane-sulfonate (MS-222), and exposure to drying. The working dosage of MS-222 varied significantly with fish size and hatchery population. Smaller fish were less resistant to the chemical than larger ones. MS-222 effects also differed with fish growth history. The fish cultured in embanked populations showed stronger resistance, earlier recovery, and lower mortality, compared to those cultured in land-based tanks or collected from wild stocks. Similar results were seen in juveniles challenged to dry exposure. These results suggest that an embanked population of black rockfish is more resistant to anesthetic stress, expressed as anesthesia recovery and mortality, and that this population is healthier than others.

  • PDF

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF