• 제목/요약/키워드: Methane conversion rate

검색결과 118건 처리시간 0.025초

유동층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향 (Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor)

  • 김상범;김영국;황재영;김명수;박홍수;함현식
    • 한국응용과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.225-230
    • /
    • 2004
  • Synthesis gas is a high valued compound as a basic chemicals at various chemical processes. Synthesis gas is mainly produced commercially by a steam reforming process. However, the process is highly endothermic so that the process is very energy-consuming process. Thus, this study was carried out to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst in a fluidized bed reactor. With the fluidized bed reactor, $CH_4$ conversion was 91%, and Hz and CO selectivities were both 98% at 850$^{\circ}C$ and total flow rate of 100 mL/min. These values were higher than those of fixed bed reactor. From this result, we found that with the use of the fluidized bed reactor it was possible to avoid the disadvantage of fixed bed reactor (explosion) and increase the productivity of synthesis gas.

팔라듐-은 막반응기를 이용한 메탄의 부분산화반응 (Partial Oxidation of Methane in Palladium-silver Alloy Membrane Reactor)

  • 최태호;김광제;문상진;서정철;백영순
    • 공업화학
    • /
    • 제16권5호
    • /
    • pp.641-647
    • /
    • 2005
  • 메탄의 부분산화반응은 수소 제조의 중요한 반응 중의 하나이다. 무전해 도금방법에 의해 제조된 팔라듐-은 막을 막반응기(membrane reactor)로서 메탄의 부분산화반응에 적용하여 반응온도, $O_2/CH_4$ 몰비, $CH_4$ 공급속도, $N_2$ 운반 가스 흐름속도 등의 변화에 따라 실험을 수행하였다. 막반응기의 메탄 전환율은 알루미나에 담지된 니켈 촉매를 사용하는 반응조건하에서 $350{\sim}730^{\circ}C$의 반응온도에 따라 증가하는 경향을 보였으며, 특히 $730^{\circ}C$$O_2/CH_4$ 몰비 0.5에서 메탄 전환율과 CO 선택도가 가장 높았다. 막반응기의 메탄 전환율은 전통적인 관형반응기와 비교한 결과 반응조건에 따라 10~40% 정도 높았다.

매립지가스(LFG)로부터 합성가스 제조시 반응조건에 따른 수율에 미치는 연구 (A Effect of Reaction Conditions on Syngas Yield for the Preparation of Syngas from Landfill Gas)

  • 조욱상;최경돈;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.477-483
    • /
    • 2015
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas yield on the amount of LFG components over $NiO-MgO-CeO_2/Al_2O_3$ catalyst. Results were obtained through the methan reforming experiments at the temperature of $900^{\circ}C$ and GHSV of 8,800. The results were as following; it has generally shown that syngas yield increase with the increase of oxygen and steam amounts and then decrease. Highly methane conversion of above 98% and syngas yield of approximately 60% were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 450ml/min of steam, respectively, under reactor pressure of 1 bar for 200 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

3D-IR Matrix 버너 개질기를 활용한 모사 바이오가스 수증기 개질 연구 (The Study of Steam Reforming for Model Bioigas using 3D-IR Matrix Burner Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.100-108
    • /
    • 2011
  • The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. This research if for the hydrogen production through the steam reforming of the biogas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The nickel catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60%:40%, 19.32L/$g{\cdot}hr$ and $700^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ concentration was 73.9% and methane conversion rate was 98.9%.

Bioconversion of methane to methanol using Methylosinus trichosporium OB3b in the repeated batch reaction system

  • 이상귀;김희곤;김진권;이중헌;김시욱
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.116-120
    • /
    • 2003
  • Type strain, Methylosinus trichosporium OB3b, was used to convert methane to methanol. To prevent further oxidation of methanol, NaCl and EDTA were used as inhibitors of methanol dehydrogenase. The reaction temperature was $25^{\circ}C$, and the concentrations of cell and sodium formate added to the reaction mixture were 0.6 mg dry cell wt/ml and 20 mM, respectively. During 12hr reaction, 8 mM methanol was accumulated in the reaction mixture. In this reaction $K_m$ and $V_{max}$ values were found to be 532.6 mM and 1.749 mmol/hr, respectively, and the conversion rate was approximately 37%. To increase the concentration of methanol in the medium, a repeated batch reaction was carried out. In this process, methane was injected every eight hours, and the produced methanol concentration was 18 mM.

  • PDF

NaCl/ZnO/α-Al2O3 촉매상에서 메탄의 Oxidative Coupling의 속도론적 고찰 (Kinetics of Oxidative Coupling of Methane over NaCl/ZnO/α-Al2O3 Catalyst)

  • 김상채;서호준;선우창신;유의연
    • 공업화학
    • /
    • 제3권2호
    • /
    • pp.256-265
    • /
    • 1992
  • NaCl(30wt%)/ZnO(60wt%)/${\alpha}-Al_2O_3$ 촉매상에서 메탄의 oxidative coupling 반응의 속도식을 연구하여 활성 산소종에 관하여 고찰하였다. 반응온도 $650^{\circ}C$에서 $750^{\circ}C$까지 메탄의 전화율 10%미만의 범위에서 메탄과 산소의 분압을 변화시켜 가면서 메탄의 전환속도를 측정하여 속도식을 검증하였다. 제안된 메틸라디칼의 생성반응은 Langmuir-Hinshelwood형 반응기구를 따른다. 촉매표면의 서로 다른 활성점에 흡착된 메탄분자와 산소분자가 반응하여 메틸라디칼이 생성되는 반응이 속도결정단계이며, 이때 활성화 에너지는 약 39kcal/mol이었다. 메탄의 C-H 결합의 해리에 관여하는 산소종은 표면상의 이원자 산소인 $O{_2}{^{2-}}$$O_2{^-}$로 제시할 수 있었다.

  • PDF

합성가스 생산을 위한 플라즈마-덤프 개질기 개발 (Development of a Plasma-Dump Reformer for Syngas Production)

  • 임문섭;김은혁;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.586-593
    • /
    • 2014
  • Limited sources of fossil fuels and also global climate changes caused by $CO_2$ emissions are currently discussed around the world. As a renewable, carbon neutral and widely available energy source, biogas is regarded as a promising alternative to fossil fuels. In this study, a plasma dump reformer was proposed to produce $H_2$-rich synthesis gas by a model biogas. The three-phase gliding arc plasma and dump combustor were combined. Screening studies were carried out with the parameter of a dump injector flow rate, water feeding flow rate, air ratio, biogas component ratio and input power. As the results, methane conversion rate, carbon dioxide conversion rate, hydrogen selectivity, carbon monoxide yield at the optimum conditions were achieved to 98%, 69%, 42%, 24.7%, respectively.

이상혐기공정의 축산폐수 공공처리시설 적용 가능성에 관한 실험적 연구 (A Study on the Evaluation of Two-Phase Anaerobic Process for Public Livestock Wastewater Treatment Plant)

  • 오성모;김문호;배윤선;박철휘
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.331-339
    • /
    • 2007
  • The purpose of this study was to investigate the biodegradability and performance of organic removal and methane production rate when treating piggery wastewater using a pilot scale two-phase anaerobic system operated up to a volumetric rate of $10m^3/day$. The pilot scale two-phase anaerobic process is consisted of a continuous-flow stirred-tank reactor (CFSTR) for the acidification phase and an Upflow Anaerobic Sludge Blanket reactor (UASB) for the methanogenesis. The acidogenic reactor played key roles in reducing the periodically applied shock-loading and in the acidification of the influent organics. The acidogenic CFSTR was operated at organic loading rates (OLR) between 1.8 and $14.4kgCOD/m^3{\cdot}day$, and the UASB reactor was operated between 0.5 and $5.6kgCOD/m^3{\cdot}day$. A stable maximum biogas production rate was $81m^3/day$ and the methane conversion rate of the organic matter varied from 0.30 to $0.42L\;CH_4/g\;COD_{removed}$(0.40) at hydraulic retention time (HRT) above 3.5days. The methane contents ranged from 73 to 82% during the experimental period. It is known that most of the removed organic matter was converted to methane gas, and the produced biogas might be high quality for its subsequent use.

에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안 (Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant)

  • 송민수;김형호;배효관
    • 한국물환경학회지
    • /
    • 제36권1호
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Ni 촉매 상에서 Power to Gas (P2G) 기술의 CO2 메탄화 반응에 관한 연구 (A Study on the CO2 Methanation in Power to Gas (P2G) over Ni-Catalysts)

  • 염규인;서명원;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.14-20
    • /
    • 2019
  • The power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technologies produces hydrogen by decomposing water from renewable energy (electricity) and the other produces $CH_4$ by reacting hydrogen with $CO_2$. The objective of this study is the reaction of $CO_2$ methanation which synthesized methane by reacting carbon dioxide and hydrogen. The effect of $CO_2$ conversion and $CH_4$ selectivity on reaction temperature, pressure, and methane contents over 40% Ni catalyst was mainly investigated throughout this study. As a result, the activity of this catalyst appeared to be the highest in $CH_4$ yield at around $400^{\circ}C$ and the selectivity of $CH_4$ increased with increasing reaction pressure. The methane content was not significantly influenced below 3% of all componets. As the space velocity increases from 10,000 to 30,000/hr, the $CO_2$ conversion rate tends to decrease.