• Title/Summary/Keyword: Methane Yield

Search Result 226, Processing Time 0.025 seconds

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Application Level of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용기준 연구)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Park, Baeg-Kyun;Kim, Seung-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2002
  • This study was conducted to evaluate the effect of the proper application level of anaerobic digestion waste water on rice. The waste water was from methane fermentation of pig manure to use as a liquid manure. The mixture treatment of 70% liquid manure and 30% chemical fertilizer (LM 70%+CF 30%) and 100% liquid manure (LM 100%) treatment were higher number of tiller than other treatments at the both tillering and heading stages of rice. The yields of LM 70%+CF 30% and LM 100% treatments were a little higher than that of NPK treatment, but the mixture treatment of 50% liquid manure and 50% chemical fertilizer (LM 50%+CF 50%) was a little lower yield than NPK treatment. The periodic changes of the $NH_4-N$ and $NO_3-N$ contents of the NPK and the LM 50%+CF 50% treatments in paddy soil were a little higher than those of other treatments at the early stage of rice. The $NH_4-N$ contents of NPK and the LM 50%+CF 50% treatments in irrigation water quality were higher than those of other treatments, however there was no difference in $NO_3-N$ content among the treatments. The $NH_4-N$ and $NO_3-N$ contents of non fertilizer treatment in infiltration water quality were leached a little higher than those of other treatments. It may be due to poor growth of rice following to reduce the nutrient uptake by rice and to increase relatively the nutrient leaching to the ground water. The proper application level of anaerobic digestion waste water as a liquid manure could be suggested to apply LM 70%+CF 30%. All treatments were the same amount of nitrogen content for the standard application amount on rice.

Manufacture Condition of Oleoresin using Citron Peel (유자과피를 이용한 Oleoresin의 제조 조건)

  • Jeong, Jin-Woong;Lee, Young-Chul;Lee, Kyung-Mee;Kim, In-Hwan;Lee, Mie-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.139-145
    • /
    • 1998
  • This study was performed to provide fundamental data on the optimum manufacture condition of oleoresin using citron peel. Oleoresin was extracted from freeze-dried or hot air dried citron peels using various solvents (hexane, ether, dichloromethane, acetone. and methanol), mixing ratio, extraction temperature, and time. As a result, optimum extraction conditions of oleoresin were: solvent mixing ratio 1:10 (w/v), extraction time 2 hours, and extraction temperature $60^{\circ}C$ when used methanol, and their dichloromethane 1:10 (w/v), 4 hours and $20^{\circ}C$, respectively. At optimum extraction conditions, the yield of oleoresin was shown that 35.79% at hot air drying samples, 32.04% at freeze-dried ones when extracted by methanol, but shown 5.86% and 6.16% when used dichloromethane respectively. The number of volatile components present in citron oleoresin were confirmed as thirty two in methnol extracion method and twenty nine in dichloromethane extraction method by GC and GC/MS, respectively. But, in the kinds and amounts of volatile flavor components, relatively greater numbers of volatiles were identified in freeze-dried sample extracted by dichloromethane compared with other methods. In freeze-dried sample extracted by dichloromethane, volatile components of citron oleoresin predominantly occupied by limonene and ${\gamma}-terpinene$ with about 85%. Other important compounds were shown hydrocarbons. such as ${\alpha}-pinene$, myrcene, terpinolene, ${\beta}-farnesene\;and,\;{\delta}-elemene$, and linalool as alcohols.

  • PDF

Magnetic Properties and Application of Caltalysts in Biginelli Reaction for the Ni and Ni@C Synthesized by Levitational Gas Condensation (LGC) (부양증발응축법으로 제조된 Ni과 Ni@C의 자성특성 및 Biginelli 합성 촉매 적용연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.87-91
    • /
    • 2017
  • Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Characteristic evaluation of anaerobic co-digestion using desulfurization sludge and primary sludge (탈황슬러지 및 생슬러지를 이용한 혐기성 병합소화 특성평가)

  • Seulki Koo;Woojin Chung;Soonwoong Chang;Myoungsoo Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, anaerobic co-digestion was carried out using desulfurization sludge and sewage sludge (primary sludge) to evaluate the effects of sulfur compounds in anaerobic digestion. The experiment was carried out in the form of a batch test using 500 mL duran bottle, and the mixing ratio of the feedstock was selected based on the ratio of COD/SO4. As a result of the experiment, it was confirmed that the amount of biogas generated and the yield decreased at the mixing ratio of COD/SO4 20 or less. In particular, below COD/SO4 10, it was lower than seed (283.5 mL) which was set without feedstock to correct biogas generated by itself from seed sludge. Methane yield tended to decrease from a ratio of COD/SO4 20 or less to 0.135 m3/kg VS compared to 0.396 m3/kg VS of COD/SO4 50. In addition, compared to 0.0097 m3/kg VS of hydrogen sulfide yield from COD/SO4 50, the ratio of COD/SO4 20 increased sharply to 0.0223 m3/kg VS, and in particular, the highest result was 0.0855 m3/kg VS in COD/SO4 10. Based on these results, it is judged that the effect of sulfide in anaerobic digestion can have an adverse effect if the COD/SO4 ratio decreases to less than 20.

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

Application Amount of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용적량 구명)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Lee, Sang-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2002
  • This study was carried out to evaluate the proper application amount of anaerobic digestion waste water and the environmental influence on rice. The waste water collected after methane fermentation process of pig manure was used as a liquid manure. Liquid manure 100%+chemical fertilizer 30%(LM 100%+CF 30) treatment was the most favorable at all growth stages of rice. The LM 100%+CF 30% treatment was applied to 100% amount of liquid manure which was correspond to the same amount of nitrogen for the standard application amount on rice, with adding 30% amount of chemical fertilizer(urea) at tillering stage. The yields of rice in the treatments of 100%(LM 100%) and 150% amount(LM 150%) of liquid manure were similar or a little higher than NPK treatment but LM 100%+CF 30% treatment was less than the NPK treatment due to the increase of straw weight and plant lodging. In periodic changes of the $NH_4-N$ and $NO_3-N$ contents, the LM 70%+CF 30% treatment in paddy soil was the highest in all treatments. The NPK and the LM 100% treatments in irrigation water quality were higher than other treatments. In infiltration water quality, $NH_4-N$ content was leached out much in the LM 150% treatment and $NO_3-N$ content was in the LM 100%+CF 30% treatment. The proper application amount of anaerobic digestion waste water as a liquid manure must be to analyse the nitrogen content of the waste water and to apply the same amount of nitrogen for the standard application amount on rice.

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.