• 제목/요약/키워드: Methane Content

Search Result 248, Processing Time 0.034 seconds

Sludge Solubilization by Pre-treatment and its Effect on Methane Production and Sludge Reduction in Anaerobic Digestion (전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지 감량에 미치는 영향)

  • Kim, Dong-Jin;Kim, Hye-Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.103-109
    • /
    • 2010
  • Anaerobic digestion has been widely used for the treatment of sludge, which is generated from the municipal and industrial wastewater treatment, for its volume reduction and methane production. Many researches on sludge pre-treatment have been carried out in order to enhance the performance of anaerobic digestion by increasing the hydrolysis of sludge which is the rate limiting step of anaerobic digestion. In this study, the effect of pre-treatment on sludge hydrolysis(solubilization), methane production and sludge reduction by anaerobic digestion after thermal, ultrasonic, and thermal-alkali sludge treatment were compared. Thermal-alkali treatment showed 67 and 70% solubilization with municipal and industrial wastewater sludge, respectively, while ultrasonic treatment and thermal treatment gave similar solubilization efficiency of 40% or more. Methane content of the anaerobic digestion gas reached 45~70% and pretreated sludge gave higher methane content than the control sludge. Methane production of thermal, ultrasonic, and thermal-alkali pre-treatment gave 2.6, 2.7, 3.5 times of municipal control sludge and 3.5, 4.1, 4.2 times of industrial control sludge, respectively. Sludge reduction of pre-treated sludge after anaerobic digestion gave 5~19% point higher than that of control sludge, and thermal-alkali treatment showed higher reduction efficiency than thermal and ultrasonic treatment. The results proved that pre-treatment contributed significantly not only for the methane production but also for the cost reduction of sludge treatment and disposal, and thermal-alkali treatment gave the best performance for the sludge treatment.

Changes in Methane Emissions from Paddy under Different Tillage and Cultivation Methods (벼 재배 시 경운 및 재배방법에 의한 메탄발생 양상)

  • Kim, Sukjin;Cho, Hyun-Suk;Choi, Jong-Seo;Park, Ki Do;Jang, Jeong-Sook;Kang, Shin-gu;Park, Jeong-Hwa;Kim, Min-Tae;Kang, In-Jeong;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.251-256
    • /
    • 2016
  • The increase in carbon stock and sustainability of crop production are the main challenges in agricultural fields relevant to climate change. Methane is the most important greenhouse gas emitted from paddy fields. This study was conducted to investigate the effects of tillage and cultivation methods on methane emissions in rice production in 2014 and 2015. Different combinations of tillage and cultivation were implemented, including conventional tillage-transplanting (T-T), tillage-wet hill seeding (T-W), minimum tillage-dry seeding (MT-D), and no-tillage-dry seeding (NT-D). The amount of methane emitted was the highest in T-T treatment. In MT-D and NT-D treatments, methane emissions were significantly decreased by 77%, compared with that in T-T treatment. Conversely, the soil total carbon (STC) content was higher in MT-D and NT-D plots than in tillage plots. In both years, methane emissions were highly correlated with the dry weight of rice ($R^2=0.62{\sim}0.96$), although the cumulative emissions during the rice growing period was higher in 2014 than in 2015. T-T treatment showed the highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that NT-D practice in rice production could reduce the methane emissions and increase the STC content without loss in grain yield.

The Development of a Biofilter to Reduce Atmospheric Methane Emissions from MSW Landfills

  • Park, Soyoung;K.W. Brown;J.C. Thomas
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.73-76
    • /
    • 2002
  • Biofilter performance to reduce C $H_4$ emissions from MSW landfills was tested under a variety of environmental and design conditions. The optimum soil moisture content for C $H_4$ oxidation in a loamy sand was 13% by weight. The addition of N $O_3$-N did not affect the C $H_4$ oxidation rate. Soil depths of 30cm and 60cm were equally efficient in C $H_4$ oxidation. When the C $H_4$ loading rate was decreased, the percentage of C $H_4$ oxidized increased. The maximum C $H_4$ oxidation rate was 27.2 mol $m^{-2}$ $d^{-1}$ under optimum conditions (loamy sand soil, 13% moisture content, 30cm soil depth, and an loading rate of 32.8 mol $m^{-2}$ $d^{-1}$). Based on the above results, the installation of a properly sized and managed biofilter above a landfill cover should be capable of achieving a major reduction in atmospheric methane emissions from MSW landfills built with RCRA covers.

  • PDF

Sludge Solubilization using Microwave Irradiation in the Presence of Fe Powder

  • Yi, Min-Joo;Choi, Hyun-Kyung;Han, Ihn-Sup
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, microwave irradiation, which is reflected by metals, was used to reduce the amount of sewage sludge, and the results were used to verify solubilization efficiency and determine optimum operation conditions. Biogas production and methane content of the gas under optimized conditions were measured with the biochemical methane potential (BMP) test. The sludge was taken from a thickened sludge tank at J sewage treatment plant (JSTP) in Seoul, Korea. For the experiments, 50 mL of sludge was filled in vessels and the vessels were irradiated with the power of 500, 600, 700, and 800W for 2~5 min. In addition, Fe powder was added by 0.01, 0.05, and 0.1 g to compare the efficiency with and without Fe powder. The results confirmed that solubilization efficiency was higher in the presence of Fe powder. The optimum conditions of 0.01 g addition of Fe powder with 800W irradiation for 5 min, yielded nearly 22.95% higher solubilization efficiency than without Fe powder. The BMP tests were carried out using sludge obtained from the experiments carried out under the optimum conditions. As a result, sludge subjected by 800W with 0.01 g of Fe powder for 5 min displayed the highest level of gas production and methane content. Through this study, it could be confirmed that solubilization efficiency increased by addition of Fe powder.

Influence of Diet on Methane and Nitrous Oxide Emissions from Cattle Manure

  • Nampoothiri, Vinu M.;Mohini, Madhu;Thakur, S.S.;Mondal, Goutham
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Livestock is one of the major contributors of greenhouse gases (GHGs). It accounts for 14.5% of the global GHGs emissions like methane ($CH_4$) from enteric fermentation and manure, nitrous oxide ($N_2O$) from manure and fertilizer. Since enteric emissions are a major contributor of $CH_4$ than that of manure emissions hence primary efforts were made on reducing enteric emissions, with minor attention to dung emissions. Many researches were conducted by dietary manipulation to mitigate enteric $CH_4$ emission. However dietary manipulation also had significant effects on manure GHGs emissions too. Several works proved that manure $CH_4$ emissions were increased with high level of concentrate supplementation despite reduction in enteric $CH_4$. Fat and CP content of the diet has shown inconsistent results on manure $CH_4$ emissions. Amount of concentrate in the diet has shown little effect whereas dietary CP content exhibited conflicting effects on manure $N_2O$ emissions.

Recovery of High-Purity Methane from Piggery Wastewater in the Phase-Separated Anaerobic Process (상분리 혐기성공정에 의한 양돈폐수로부터 고순도 메탄회수)

  • Jung, Jin-Young;Chung, Yun-Chul;Yoo, Chang-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.210-213
    • /
    • 2008
  • The purpose of this study is to investigate the performances of organic removal and methane recovery in the full scale two-phase anaerobic system. The full scale two-phase anaerobic system was consists of an acidogenic ABR (Anaerobic Baffled Reactor) and a methanognic UASB (Upflow Anaerobic Sludge Blanket) reactor. The volume of acidogenic and methanogenic reactors is designed to 28.3 $m^3$ and 75.3 $m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed 2,740 $\pm$ 330 mg/L by representing average COD removal efficiency was 71.4 $\pm$ 8.1% when the operating temperature was in the range of 19-32$^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70 % of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

  • PDF

Methane Recovery and Performances of Full-scale Two-stage Anaerobic Process Treating Piggery Wastewater (양돈폐수처리시 실규모 이단 혐기성공정의 성능 및 메탄회수)

  • Jung, Jin-young;Chung, Yun-chul;Kang, Shin-hyun;Chung, Hyung-sook
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2005
  • The purpose of this study is to investigate the performances of organic removal and methane recovery by using a full scale two-phase anaerobic system. The full scale two-phase anaerobic process was consists of an acidogenic anaerobic baffled reactor (ABR) and a methanognic upflow anaerobic sludge blanket (UASB) reactor. The volumes of acidogenic and methanogenic reactors were designed to $28.3m^3$ and $75.3m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed $2,740{\pm}330 mg/L$ by representing average COD removal efficiency was $71.4{\pm}8.1%$ when the operating temperature was in the range of $19-32^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty acid concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70% of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

A Study for Mechanical and Platelet Adhesion Properties of Fluorinated Polyurethanes (불소화된 폴리우레탄의 기계적 물성과 혈소판 점착특성에 관한 연구)

  • 김형중
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2001
  • The mechanical and the platelet adhesion properties of the fluorinated polyurethane elastomers synthesized with a perfluorinated polyether diol (Fomblin ZDOL$ZDOL^{(R)}$) and 4,4'-diphenyl methane diisocyanate (MDI) were investigated. The change of mechanical properties with the Fomblin content and the type of the polyether diol was investigated by applying a designed technique using in vitro platelet adhesion test. As a result, the tensile properties were affected by the content and the type of nixed polyether diols. Also the platelet adhesion of polyurethane elastomers decreased with increasing the extent of fluorination in the polymer.

  • PDF

Effects of Oxygen Addition on the Growth Rate and Crystallinity in Diamond CVD (다이아몬드 CVD에서 산소혼입이 증착속도 및 결정성에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.401-411
    • /
    • 1990
  • Deposition of diamond films on Si(100) from the mixtures of methane and hydrogen were investigated using hot W filament CVD method. The nucleation density could be increased thousandfold by surface treatment with SiC powder. Upon oxygen addition to the mixture, crystal facets became developed more clearly by selectively removing non-diamond carbons, but the film growth rate generally decreased. However, at a very high methane content(e.g. 10%), a small amount of oxygen addition has resulted in an increase in the film deposition rate presumably by promotion of methane decomposition. When the gas pressure was varied, the growth rate exhibited a maxiumum at around 20torr and the film crystallinity steadily improved with the pressure increase. The observed variation of the growth rate by oxygen addition was discussed in terms of its role in the pyrolysis and the subsequent gas phase reactions.

  • PDF