• Title/Summary/Keyword: Meteorology information

Search Result 350, Processing Time 0.027 seconds

Electric and Electromagnetic Surveys of the Hongseong Fault Zone (홍성 단층대에서의 전기, 전자 탐사 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Park, Gye-Soon;Oh, Seok-Hoon;Lee, Choon-Ki
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2003
  • We have investigated the electric resistivity structure of the fault zone located in the Hongseong area where a big earthquake with M 5.0 occurred in 1978. Usually, Electric and Electromagnetic methods are broadly operated in the field of engineering works since these methods are effective to understand the distribution of geological weak zones - fault or fracture zones. We have conducted the dipole-dipole array resistivity method and MT(magnetotelluric) method and interpreted the resistivity distribution of the fault zone with the aid of various inversion methods. An MT survey was performed at 18 points along a 2.9 km survey line perpendicular to the fault line and a magnetic dipole source was used to enhance the S/N ratio in the high frequency. A Electric dipole-dipole array resistivity survey with the dipole length of 50 meters was carried out perpendicular to the fault. In view of two survey results, the fault marks the boundary between two opposite resistivity structures, especially the low resistivity zone is exhibited deeply through the prospective fault line. The result that the low resistivity zone is located at the center of the fault zone corresponds with the fact that the fault zone of the Hongseong area is active. We expect these results to provide basic information about the physical properties of fault zones in Korea.

Climate Change in Corn Fields of the Coastal Region of Ecuador

  • Borja, Nicolas;Cho, Jaepil;Choi, KyungSook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.271-271
    • /
    • 2015
  • The Ecuadorian coast has two different climate regions. One is humid region where the annual rainfall is above 2000 mm and rain falls in almost all months of the year, and the other is dry region where the annual rainfall can fall below 50 mm and rainfall can be very seasonal. The agriculture is frequently limited by the seasons during the year and the availability of rainfall amounts. The corn fields in Ecuador are cultivated during the rainy season, due to this reason. The weather conditions for optimum development of corn growth require a monthly average rainfall of 120 mm to 140 mm and a temperature range of $22^{\circ}C{\sim}32^{\circ}C$ for the dry region, and a monthly average rainfall of 200 mm to 400 mm and a temperature range of $25^{\circ}C{\sim}30^{\circ}C$ for the humid area. The objective of this study is to predict how the weather conditions are going to change in corn fields of the coastal region of Ecuador in the future decades. For this purpose, this study selected six General Circulation Models (GCM) including BCC-CSM1-1, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRIC-CGC3 with different climate scenarios of the RCP 4.5, RCP 6.0, and RCP 8.5, and applied for the period from 2011 to 2100. The climate variables information was obtained from the INAMHI (National Institute of Meteorology and Hydrology) in Ecuador for the a base line period from 1986 to 2012. The results indicates that two regions would experience significant changes in rainfall and temperature compared to the historical data. In the case of temperature, an increment of $1^{\circ}C{\sim}1.2^{\circ}C$ in 2025s, $1.6^{\circ}C{\sim}2.2^{\circ}C$ in 2055s, $2.1^{\circ}C{\sim}3.5^{\circ}C$ in 2085s were obtained from the dry region while less increment were shown from the humid region with having an increment of $1^{\circ}C$ in 2025s, $1.4^{\circ}C{\sim}1.8^{\circ}C$ in 2055s, $1.9^{\circ}C{\sim}3.2^{\circ}C$ in 2085s. Significant changes in rainfall are also projected. The rainfall projections showed an increment of 8%~11% in 2025s, 21%~33% in 2055s, and 34%~70% in 2085s for the dry region, and an increment of 2%~10%, 14%~30% and 23%~57% in 2025s, 2055s and 2085s decade respectively for humid region.

  • PDF

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

Field Validation of PBcast in Timing Fungicide Sprays to Control Phytophthora Blight of Chili Pepper (고추 역병 방제시기 결정을 위한 PBcast 예측모델 타당성 포장 평가)

  • Ahn, Mun-Il;Do, Ki Seok;Lee, Kyeong Hee;Yun, Sung Chul;Park, Eun Woo
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.229-238
    • /
    • 2020
  • Field validation of PBcast, an infection risk model for Phytophthora blight of pepper, was conducted through a designed field experiment in 2012 and 2013. Conduciveness of weather conditions at 26 locations in Korea in 2014-2017 was also evaluated using PBcast. The PBcast estimated daily infection risk (IR) of Phytophthora capsici based on weather and soil texture data. In the designed filed experiment, four treatments including routine sprays at 7-day intervals (RTN7), forecast-based sprays when IR reached 200 (IR200) and 224 (IR224), and no spray (CTRL) were compared in terms of disease incidence and number of sprays recommended for disease control. In 2012, IR had reached over 200 twice, but never reached 224. In 2013, IR had reached over 200 three times and once higher than 224. The RTN7 plots were sprayed 17 and 18 times in 2012 and 2013, respectively. Weather conditions throughout the country were generally conducive for Phytophthora blight and 3-4 times of fungicide sprays would have been reduced if the PBcast forecast information was adopted in the decision-making for fungicide sprays. In conclusion, the PBcast forecast would be useful to reduce fungicide applications without losing the disease control efficacy to protect pepper crop from Phytophthora blight.

Design of Calibration and Validation Area for Forestry Vegetation Index from CAS500-4 (농림위성 산림분야 식생지수 검보정 사이트 설계)

  • Lim, Joongbin;Cha, Sungeun;Won, Myoungsoo;Kim, Joon;Park, Juhan;Ryu, Youngryel;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.311-326
    • /
    • 2022
  • The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.

Current Status and Future Prospect of Plant Disease Forecasting System in Korea (우리 나라 식물병 발생예찰의 현황과 전망)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.84-91
    • /
    • 2002
  • Disease forecasting in Korea was first studied in the Department of Fundamental Research, in the Central Agricultural Technology Institute in Suwon in 1947, where the dispersal of air-borne conidia of blast and brown spot pathogens in rice was examined. Disease forecasting system in Korea is operated based on information obtained from 200 main forecasting plots scattered around country (rice 150, economic crops 50) and 1,403 supplementary observational plots (rice 1,050, others 353) maintained by Korean government. Total number of target crops and diseases in both forecasting plots amount to 30 crops and 104 diseases. Disease development in the forecasting plots is examined by two extension agents specialized in disease forecasting, working in the national Agricul-tural Technology Service Center(ATSC) founded in each city and prefecture. The data obtained by the extension agents are transferred to a central organization, Rural Development Administration (RDA) through an internet-web system for analysis in a nation-wide forecasting program, and forwarded far the Central Forecasting Council consisted of 12 members from administration, university, research institution, meteorology station, and mass media to discuss present situation of disease development and subsequent progress. The council issues a forecasting information message, as a result of analysis, that is announced in public via mass media to 245 agencies including ATSC, who informs to local administration, the related agencies and farmers for implementation of disease control activity. However, in future successful performance of plant disease forecasting system is thought to be securing of excellent extension agents specialized in disease forecasting, elevation of their forecasting ability through continuous trainings, and furnishing of prominent forecasting equipments. Researches in plant disease forecasting in Korea have been concentrated on rice blast, where much information is available, but are substan-tially limited in other diseases. Most of the forecasting researches failed to achieve the continuity of researches on specialized topic, ignoring steady improvement towards practical use. Since disease forecasting loses its value without practicality, more efforts are needed to improve the practicality of the forecasting method in both spatial and temporal aspects. Since significance of disease forecasting is directly related to economic profit, further fore-casting researches should be planned and propelled in relation to fungicide spray scheduling or decision-making of control activities.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.