• 제목/요약/키워드: Meteorological variables

검색결과 398건 처리시간 0.031초

최근(2010~2012년) 제주지역 대기환경 변화에 관한 기상특성 분석 (Analysis of Meteorological Characteristics related to Changes in Atmospheric Environment on Jeju Island during 2010-2012)

  • 송상근;한승범;김석우
    • 한국환경과학회지
    • /
    • 제23권11호
    • /
    • pp.1889-1907
    • /
    • 2014
  • The characteristics of meteorological conditions related to changes in atmospheric environment on Jeju Island were investigated during recent years (2010-2012). This analysis was performed using the hourly observed data of meteorological variables (air temperature, wind speed and direction) and air pollutants ($O_3$, $PM_{10}$, $SO_2$, $NO_2$, and CO). Out of 5 pollutants, $O_3$ and $PM_{10}$ concentrations have frequently exceeded national environmental standards in the study area during the study period, with relatively higher concentrations than the others. The concentrations of $O_3$ and $PM_{10}$ in 2010 and 2011 were somewhat higher than those in 2012, and their highest concentrations were mostly observed in spring followed by fall. Nighttime $O_3$ concentrations (with relatively high concentration levels) were almost similar to its daytime concentrations, due to less $O_3$ titration by very low NO concentrations in the target area and in part to $O_3$ increase resulting from atmospheric transport processes. The transport effect related to the concentration variations of $O_3$ and $PM_{10}$ was also clarified in correlation between these pollutants and meteorological variables, e.g. the high exceedance frequency of concentration criteria with strong wind speed and the high concentrations with the westerly/northwesterly winds (e.g., transport from the polluted regions of China). The overall results of this study suggest that the changes in atmospheric environment in the study area were likely to be caused by the transport effect (horizontal and vertical) due to the meteorological conditions rather than the contribution of local emission sources.

1.5/2.0℃ 지구온난화 시나리오 기반의 동아시아 기후변화 분석 (Understanding Climate Change over East Asia under Stabilized 1.5 and 2.0℃ Global Warming Scenarios)

  • 심성보;권상훈;임윤진;염성수;변영화
    • 대기
    • /
    • 제29권4호
    • /
    • pp.391-401
    • /
    • 2019
  • This study first investigates the changes of the mean and extreme temperatures and precipitation in East Asia (EA) under stabilized 1.5℃ and 2℃ warming conditions above preindustrial levels provided by HAPPI project. Here, five model with 925 members for 10-year historical period (2006~2015) and 1.5/2.0℃ future warming scenarios (2091~2100) have been used and monthly based data have been analyzed. The results show that the spatial distribution fields over EA and domain averaged variables in HAPPI 1.5/2.0℃ hindcast simulations are comparable to observations. It is found that the magnitude of mean temperature warming in EA and Korea is similar to the global mean, but for extreme temperatures local higher warming trend for minimum temperature is significant. In terms of precipitation, most subregion in EA will see more increased precipitation under 1.5/2.0℃ warming compared to the global mean. These attribute for probability density function of analyzed variables to get wider with increasing mean values in 1.5/2.0℃ warming conditions. As the result of vulnerability of 0.5℃ additional warming from 1.5 to 2.0℃, 0.5℃ additional warming contributes to the increases in extreme events and especially the impact over South Korea is slightly larger than EA. Therefore, limiting global warming by 0.5℃ can help avoid the increases in extreme temperature and precipitation events in terms of intensity and frequency.

중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증 (Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer)

  • 변재영;김지영;최병철;최영진
    • 대기
    • /
    • 제18권3호
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

현 기후예측시스템에서의 기온과 강수 계절 확률 예측 신뢰도 평가 (Reliability Assessment of Temperature and Precipitation Seasonal Probability in Current Climate Prediction Systems)

  • 현유경;박진경;이조한;임소민;허솔잎;함현준;이상민;지희숙;김윤재
    • 대기
    • /
    • 제30권2호
    • /
    • pp.141-154
    • /
    • 2020
  • Seasonal forecast is growing in demand, as it provides valuable information for decision making and potential to reduce impact on weather events. This study examines how operational climate prediction systems can be reliable, producing the probability forecast in seasonal scale. A reliability diagram was used, which is a tool for the reliability by comparing probabilities with the corresponding observed frequency. It is proposed for a method grading scales of 1-5 based on the reliability diagram to quantify the reliability. Probabilities are derived from ensemble members using hindcast data. The analysis is focused on skill for 2 m temperature and precipitation from climate prediction systems in KMA, UKMO, and ECMWF, NCEP and JMA. Five categorizations are found depending on variables, seasons and regions. The probability forecast for 2 m temperature can be relied on while that for precipitation is reliable only in few regions. The probabilistic skill in KMA and UKMO is comparable with ECMWF, and the reliabilities tend to increase as the ensemble size and hindcast period increasing.

계절과 수문기상학적 조건에 따른 지역 증발산의 특성화 (Characterization of Local Evapotranspiration Based on the Seasonal and Hydrometeorological Conditions)

  • 임창수;이종태;윤세의
    • 물과 미래
    • /
    • 제29권2호
    • /
    • pp.235-247
    • /
    • 1996
  • 여름우기와 겨울기간 동안에 준건조 기후 유역들(Lucky Hills 그리고 Kendall) 로부터 측정된 기상학적 그리고 토양 함수량 자료를 이용하여 증발산의 조절변수들 간에 상관관계와 매일의 실제 증발산량 산정을 위한 변수들의 영향을 연구하였다. 기상학적 요소와 토양 함수량의 중요도를 알아보기 위하여 단순, 다변량선형상관분석들이 적용되어졌으며, 얻어진 정보는 다변량선형상관모델을 개발하기 위하여 사용되어졌다. 유효 에너지와 대기 증기압 차는 두 다른 유역과 계절 기간 동안에 증발산을 지배하는 중요한 변수인 것으로 판명되어졌다. 그러므로 준건조 기후 지역에 있어서 증발산 과정의 중요한 변수로는 단순히 Penman에 의해서 제안된 잠재 증발산 모형의 에너지 항에 있어서 유효 에너지와 공기 동력 항에 있어서 대기증개압차인 것으로 나타났다.

  • PDF

기상자료를 이용한 남한지역 도별 쌀 생산량 추정 (Estimation of Rice Yield by Province in South Korea based on Meteorological Variables)

  • 허지나;심교문;김용석;강기경
    • 한국지구과학회지
    • /
    • 제40권6호
    • /
    • pp.599-605
    • /
    • 2019
  • 작물 생육에 영향 요소인 기상 변수들을 이용하여 우리나라 쌀 생산량(kg 10a-1)을 추정하였다. 이 연구는 기상 변수의 연 변동성을 기반으로 간단하지만 효과적인 통계 방법인 다중회귀모형을 이용하여 쌀 생산량에 대한 예측 가능성을 살펴보았다. 비균질적인 환경 조건의 특성을 고려하여, 연 쌀 생산량을 우리나라 도별로 추정하고 검증하였다. 기상청에서 제공하는 1986년부터 2018년까지 33년간 관측된 61개지점의 월 평균 기상 자료를 설명자료로 사용하였다. 11겹 교차검증(11-fold cross-validation)을 이용하여 추정된 쌀 생산량의 정확도를 추정하였다. 분석한 결과, 상관계수(0.7) 측면에서 간단한 과정으로도 도별 쌀 생산량의 시간적 변화를 잘 모의하였다. 또한 추정된 쌀 생산량은 0.7 kg 10a-1 (0.15%)의 평균 오차를 가지며, 관측의 공간적 특성을 잘 모의하였다. 이 방법은 적시에 농업기상 예측 정보를 얻는다면 쌀 생산량에 대한 유용한 정보를 사전에 얻을 수 있을 것으로 생각된다.

함정 적외선신호 민감도 해석을 통한 기상변수 영향에 관한 연구 (Study on Effectiveness of Ocean Meteorological Variables through Sensitivity Analysis of Ship Infrared Signature)

  • 조용진;정호석
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.36-42
    • /
    • 2013
  • According to a study on improving ship survivability, an IR signature represents the contrast radiance intensity between the radiation signature from a ship and the background signature. It was found from applying stealth techniques to the process of ship development that the IR signature is remarkably sensitive and dependent on the environment. In this study, marine climate data for the sea near the Korean Peninsula were collected, and the marine meteorological environment in Korean waters was defined. Based on this data, a study on the sensitivity of the IR signature of target objects was performed using analytical methods. The results of the research indicated that clouds have important effects on the infrared signature, but the velocity of the wind and the humidity have only slight effects on the IR signature. In addition, the air and seawater temperatures had hardly any effect on the IR signature, but it is judged that additional study is needed.

Affecting Factors on the Variation of Atmospheric Concentration of Polycyclic Aromatic Hydrocarbons in Central London

  • Baek, Sung-Ok;Roger Perry
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제10권E호
    • /
    • pp.343-356
    • /
    • 1994
  • In this study, a statistical investigation was carried out for the evaluation of any relationship between polycyclic aromatic hydrocarbons (PAHss) associated with ambient aerosols and other air quality parameters under varying meteorological conditions. Daily measurements for PAHs and air quality/meteorological parameters were selected from a data-base constructed by a comprehensive air monitoring in London during 1985-1987. Correlation coefficients were calculated to examine any significant relationship between the PAHs and other individual variables. Statistical analysis was further Performed for the air quality/meteorological data set using a principal component analysis to derive important factors inherent in the interactions among the variables. A total of six components were identified, representing vehicle emission, photochemical activity/volatilization, space heating, atmospheric humidity, atmospheric stability, and wet deposition. It was found from a stepwise multiple regression analysis that the vehicle emission component is overall the most important factor contributing to the variability of PAHs concentrations at the monitoring site. The photochemical activity/volatilzation component appeared to be also an important factor particularly for the lower molecular weight PAHs. In general, the space heating component was found to be next important factor, while the contributions of other three components to the variance of each PAHs did not appear to be as much important as the first three components in most cases. However, a consistency for these components in their negative correlations with PAHs data was found, indicating their roles in the depletion of PAHs concentrations in the urban atmosphere.

  • PDF

PBL Scheme에 대한 WRF-CMAQ 민감도 분석 (Sensibility Study for PBL Scheme of WRF-CMAQ)

  • 문난경;김순태;서지현
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.791-804
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of PBL (Planetary boundary layer) scheme implemented in WRF on the result of meteorological fields and CMAQ modeling. 25-day period, representing high ozone concentration, was selected for the simulations. The three WRF domains covered East Asia region, Korean Peninsula and Seoul metropolitan area. The sensitivity of WRF-CMAQ modeling to the various PBL schemes was assessed and quantified by comparing model output and against observation from the meteorological and the air quality monitoring network within the domain. The meteorological variables evaluated included temperature, wind speed and direction over surface sites and upper air sounding sites. The CMAQ variables included gaseous species $O_3$ and $NO_x$ over monitoring stations. Although difference of PBL schemes implemented in WRF, they did not appreciably affect the WRF and CMAQ performance. There are partially differences between non-local and local mixing scheme, but are not distinct differences for the results of weather and air quality. It is suggested that impact of parameterization of vertical eddy diffusivity scheme in CMAQ also need to be researched in the future study.

MODIS NDVI와 기상요인을 고려한 마늘·양파 주산단지 단수예측 모형 개발 (Development of Garlic & Onion Yield Prediction Model on Major Cultivation Regions Considering MODIS NDVI and Meteorological Elements)

  • 나상일;박찬원;소규호;박재문;이경도
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.647-659
    • /
    • 2017
  • 마늘과 양파 재배는 작물의 생육 조건과 주산지 기상에 영향을 받는다. 따라서 단수를 예측할 때에는 주산지의 작황과 기상을 고려할 필요가 있다. 본 연구에서는 2006년에서 2015년까지의 작물의 생육 조건을 반영한 MODIS NDVI와 7개 주산지의 기상요인을 다중 회귀 모형에 적용하여 주산지별 마늘 및 양파의 단수예측 모형을 개발하였다. 다중 회귀 모형에서 독립변수 채택은 단계적 선택방법을 이용하였다. 그 결과, 마늘과 양파 단수예측 모형은 2월의 MODIS NDVI가 중요한 독립변수로 채택되었다. 기상요인은 마늘의 경우, 평균온도(3월), 강우량(11월, 3월), 상대습도(4월), 최저온도(6월)가 채택되었으며, 양파는 강우량(11월), 일조시간(1월), 상대습도(4월), 최저온도(6월)가 독립변수로 채택되었다. MODIS NDVI와 기상요인을 이용한 단수예측 모형은 주산지별 마늘, 양파 평균 단수의 84.4%, 75.9% 설명력을 나타내었으며, RMSE는 각각 42.57 kg/10a, 340.29 kg/10a로 나타났다. 따라서 본 모형은 MODIS NDVI와 기상요인에 따른 마늘과 양파의 단수 변화특성을 잘 반영하고 있는 것으로 판단된다.