• Title/Summary/Keyword: Meteorological observation environment

Search Result 200, Processing Time 0.025 seconds

지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성 (Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS)

  • 이병일;손은하;오미림;김윤재
    • 대기
    • /
    • 제19권4호
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 - (Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area -)

  • 이한경;이채연;김규랑;조창범
    • 대기
    • /
    • 제29권2호
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

중규모 수치모델 WRF를 이용한 강원 지방 하층 풍속 예측 평가 (Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model)

  • 서범근;변재영;임윤진;최병철
    • 한국지구과학회지
    • /
    • 제36권2호
    • /
    • pp.158-170
    • /
    • 2015
  • 큰 에디 모의과정을 포함한 WRF 모델 (WRF-LES)을 이용하여 수치모델의 수평공간 규모에 따른 대기경계층 모수화 실험과 LES 모의 결과를 지표층 근처의 풍속 예측에 대하여 비교하였다. 수치실험은 복잡한 산악지형과 해안지역을 포함하는 강원도 지역에서 수평해상도 1 km와 333 m 실험을 수행하였다. 수평해상도 1 km 실험은 대기경계층 모수화 방안을 채택하였으며, 333 m 실험에서는 LES를 이용하였다. 복잡한 산악지역에서의 풍속 예측의 정확성은 수평해상도 1 km 실험 보다 333 m 실험에서 향상되었으며 해안지역에서는 1 km 실험에서 관측과 더 일치하였다. 지표층 근처의 큰 난류를 직접 계산하는 LES 실험은 산악지역의 풍속예측 개선에 기여하였다.

국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석 (Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites)

  • 김혜리;홍제우;임윤진;홍진규;신승숙;김윤재
    • 대기
    • /
    • 제29권4호
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구 (Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front)

  • 박창근;이태영
    • 대기
    • /
    • 제18권4호
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

관악산 대기 중의 CFC-12 및 CFC-11 모니터링에 관한 연구 (A study on Monitoring for CFC-12 and CFC-11 in the atmosphere near Mt. Kwan-Ak.)

  • 김경렬;민동하;박미경;김은희;최상화;조하만;남재철
    • 한국대기환경학회지
    • /
    • 제10권1호
    • /
    • pp.41-48
    • /
    • 1994
  • A monitoring system for atmospheric CFC-12 and CFC-11 has been established at Mt. Kwan-Ak, Seoul National University (SNU) since July, 1991. The concentrations showed quite a large variation ranging from 495 to 37600 pptv (pptv=part per trillion, 10$^{-12}$ , v/v) for CFC-12 and from 233 to 12100 pptv for CFC-11 due to many local sources. However, monthly medians show rather limited ranges ; 553~765 pptv for CFC-12 and 301~431 pptv for CFC-11. Furthermore minimum concentrations could be defined relatively well during the whole period of observation. The regional background concentrations in 1993 near SNU wer estimated as 533 pptv for CFC-12 and 293 pptv for CFC-11. These values are very comparable to global averages in Northern Hemisphere, 523 pptv for CFC-12 and 287 pptv for CFC-11, reflecting the fast atmospheric mixing processes within the hemisphere. Examinations with meteorological parameters such as wind speed and direction suggest the possible measurement-window at SNU, appropriate for regional monitoring. Studies for improving the monitoring capability of the SNU station such as automation of the analysis system along with correlation with other meteorological parameters, are in progress at the present time.

  • PDF

황사의 사례분석과 한반도 유입량 (On the occurrence of yellow sand and atmospheric loadings)

  • 정용승;윤마병
    • 한국대기환경학회지
    • /
    • 제10권4호
    • /
    • pp.233-244
    • /
    • 1994
  • The phenomenon of yellow sand (dust clouds) occurred in Korea during the spring of 1993 and 1994 is studied in detail. In total 6 cases including 15 days of yellow sand were observed in 1993 and the annual number of these events was found to increased. Examinations in this study include meteorological charts satellite imagery, pilot reports (PIREP) of Korea Air Force, and air concentrations of total suspended particulates(TSP). We present on estimation of total atmospheric loadings based on the observation and theory. According to the PIREP, in general the dust clouds travelled in the lower troposphere up to the level 5km. The visibility within the clouds was in the range of 3-8km The area covered by yellow sand in an event exceeded 0.4 M $\textrm{km}^2$ . According to trajectory analyses, dust clouds invaded Korea in April and May 1993 were landed in the sink area after 2~4 days travelling for 2,000~3,000km from a source region. Estimates of total atmospheric loadings of a dust cloud for April 23~24 in 1993 were 1.5 M ton. In addition, 7 dust storms were also reported in synoptic observations in NW China and Mongolia during the spring in 1994. The yellow sand was not reported with meteorological observations in Korea, however pilots reported significant dust clouds over the Yellow Sea on 8 and 13 April and 20 May 1994.

  • PDF

전산 유체 역학 모델을 이용한 도시지역 흐름 및 열 환경 수치모의 검증 (The Verification of a Numerical Simulation of Urban area Flow and Thermal Environment Using Computational Fluid Dynamics Model)

  • 김도형;김근회;변재영;김백조;김재진
    • 한국지구과학회지
    • /
    • 제38권7호
    • /
    • pp.522-534
    • /
    • 2017
  • 이 연구의 목적은 강남 선정릉지역에서 전산유체역학모델(CFD)을 사용하여 도시지역의 흐름 및 열 환경 모의를 검증하는 것이고, CFD 모델의 모의결과와 선정릉 지역의 관측 자료와 비교하는 것이다. CFD 모델은 국립기상과학원과 서울대가 공동으로 연구 개발된 모델이다. CFD_NIMR_SNU 모델은 기상청 현업 모델인 국지예보모델(LDAPS)의 바람성분과 온도성분을 초기 및 경계조건으로 적용되었고 수목효과와 지표 온도를 고려하여 2015년 8월 4일에서 6일까지 강남 선정릉 지역을 대상으로 수치실험을 진행하였다. 선정릉지역에서 수목효과 적용 전후의 풍속을 비교하였을 때 평균 제곱근 오차(RMSE)는 각각 1.06, $0.62m\;s^{-1}$로 나타났고 수목효과 적용으로 풍속 모의정확도가 향상되었다. 기온은 LDAPS 과소 모의하는 경향을 나타내고 CFD_NIMR_SNU 모델에 의해 향상된 것을 확인하였다. CFD_NIMR_SNU 모델을 이용하여 복잡한 도시지역의 흐름과 열 환경을 자세하고 정밀한 분석이 가능하며, 도시 환경 및 계획에 대한 정보를 제공 할 수 있을 것이다.

실시간 대화형 화산재 확산 예측 시스템 개발 (Developing Interactive Simulator for Predicting Volcanic Ash)

  • 김해동;이호만
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.527-532
    • /
    • 2014
  • According to the analysis of volcanic observation data around Korean peninsula, the activities of volcano increase continuously. For example, the volcanic eruption of Mt. Sakurajima is an example, and Mt. Baekdu can be another example potentially. In these regards, developing unified system including realtime prediction and 3D visualization of volcano ash are important to prepare the volcanic disaster systematically. In this technical report, an interactive simulator embedding dispersion algorithm and 3D visualization engine is developed. This system can contribute to the realtime prediction of volcanic disaster scientifically.

GIS를 활용한 KMA-RCM의 규모 상세화 기법 개발 및 검증 (Development of Spatial Statistical Downscaling Method for KMA-RCM by Using GIS)

  • 백경혜;이명진;강병진
    • 한국지리정보학회지
    • /
    • 제14권3호
    • /
    • pp.136-149
    • /
    • 2011
  • 본 연구의 목적은 IPCC A1B 온실가스 배출 시나리오에 따른 전지구 기후모형(global climate model, GCM)을 바탕으로 구축된 KMA-RCM(Korea meteorological administration-regional climate model)을 GIS를 활용하여 규모 상세화 기법을 개발하고 검증을 통하여 기후변화 시나리오의 불확실성을 줄이는 것이다. 연구지역은 남한 전역이며, 연구 대상 기간은 1971년부터 2100년까지이다. KMA-RCM의 규모 상세화 결과의 최적화를 위해 GIS 공간보간기법 중 기온에는 Co-Kriging, 강우에는 IDW을 활용하여 고도에 따른 기온 감율을 적용하였다. 최종 연구 결과로 총 1971년도부터 2100년의 월별 평균 기온 및 강우량이 도출되었다. 평균기온의 경우 130년 동안 $1.39^{\circ}C$ 상승하고, 강우량의 경우 271.23mm가 증가하는 것으로 파악되었다. 본 연구결과의 검증을 위하여 2001년부터 2010년까지 75개 자동기상관측지점(automated weather station, AWS) 실측자료와 동기간의 미래 기후예측값과의 상관관계를 분석하였다. 평균기온의 경우 상관계수가 0.98로 매우 높게 나타났으며 강우량의 경우 0.56으로 기온에 비해 상관관계가 낮게 분석되었다. 본 연구에서는 기존의 기후변화 시나리오 규모 상세화 연구에서 사용되던 GIS 방법론을 고도에 따른 기온감율을 적용하는 기법을 개발하였다. 이를 통하여 보다 현실성 높은 지역적 규모의 미래 기후변화 시나리오를 구축하고 이의 불확실성을 줄이기 위하여 연구를 진행하였다.