• Title/Summary/Keyword: Meteorological condition

Search Result 487, Processing Time 0.026 seconds

Impacts of the Land-sea Distribution around Korean Peninsula on the simulation of East Asia Summer Precipitation (동아시아 여름 강수 모의에 있어 한반도 주변 해륙분포가 미치는 영향)

  • Cha, Yu-Mi;Lee, Hyo-Shin;Kwon, Won-Tae;Boo, Kyung-On
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.241-253
    • /
    • 2007
  • This paper investigates summer precipitation change in East Asia according to switching surface boundary condition over South Korea and Shantung. Simulations are carried out by ECHO-G/S for 20 years (1980-1999). Surface condition over both areas in ECHO-G/S is represented by ocean (OCN experiment). In OCN experiment, the summer precipitation is considerably underestimated around the Korean peninsula (the dry region) and overestimated over the eastern Tibetan Plateau (the wet region). It may be related that the lack of the heat sources from the unrealistically prescribed land-sea mask weakens northward expansion of rainband and the development of convective precipitation. Moreover the simulated rainband retreats before June in connection with the early genesis of summer monsoon circulation. The systematic bias of the summer precipitation over the dry and wet regions are reduced comparing with the OCN experiment when the land-sea masks over South Korea and Shantung are realistically considered as land (LND experiment). These improvements can be explained by the thermodynamical dissimilarity between land and ocean. Enhanced warming by switching the areas from sea to land has led to develop the thermal low over Yellow Sea with the cyclonic circulation. Thus, this cyclonic circulation supports moistures from the south to the dry region and blocks to the wet region. The heat transport from the land surface to atmosphere plays a key role in the developing convective precipitation in local scale and maintaining the precipitation and the rainband. Therefore, this results indicate that the design of the realistic land-sea distribution is required for the accurate simulation of the regional precipitation.

A Study on the Relationships between the Casualties of Fishing Boats and Meteorological Factors (어선 해양사고와 기상요소의 관계에 관한 연구)

  • Kim, Sam-Kon;Kang, Jong-Pil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2011
  • In order to reduce the casualties of fishing boats, the author analyzed the fishing boat accident on the 412 cases in Korean maritime safety tribunal for the 2005~2009, and then studied the relation between the weather element and the accidents. According to this studies, the occurring ratio of sea casualty for fishing boat in fog weather was appeared 1 boat per 1.6 days. It means that the restricted visibility condition gives the most influence on the fishing boat accident. The casualties in winter season from November to next January occurred 139(33.7%), and small boats less than 50tons broke out more casualties with 68.4%. From this we can find that small fishing boats are very deeply affected on the sea weather condition. According to the boat types for fishing the casualty of jig boat was ranked first, and collision accident account for first with 77.9% for the types of casualties. As mentioned above, most sea casualties for small fishing boats were resulted from the human factors such as poor watch keeping in invisibility and the bad sea condition, it is necessary for navigation operators and the manager to take more attention to the meteorological factors.

The Effect of Meteorological Factors on the Temporal Variation of Agricultural Reservoir Storage (기상인자가 농업용 저수지 저수량에 미치는 영향연구)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.3-12
    • /
    • 2007
  • The purpose of this paper is to analyze the relationship between meteorological factors and agricultural reservoir storage, and predict the reservoir storage by multiple regression equation selected by high correlated meteorological factors. Two agricultural reservoirs (Geumgwang and Gosam) located in the upsteam of Gongdo water level gauging station of Anseong-cheon watershed were selected. Monthly reservoir storage data and meteorological data in Suwon weather station of 21 years (1985-2005) were collected. Three cases of correlation (case 1: yearly mean, case 2: seasonal mean dividing a year into 3 periods, and case 3: lagging the reservoir storage from 1 month to 3 months under the condition of case 2) were examined using 8 meteorological factors (precipitation, mean/maximum/minimum temperature, relative humidity, sunshine hour, wind velocity and evaporation). From the correlation analysis, 4 high correlated meteorological factors were selected, and multiple regression was executed for each case. The determination coefficient ($R^{2}$) of predicted reservoir storage for case 1 showed 0.45 and 0.49 for Geumgwang and Gosam reservoir respectively. The predicted reservoir storage for case 2 showed the highest $R^{2}$ of 0.46 and 0.56 respectively in the period of April to June. The predicted reservoir storage for 1 month lag of case 3 showed the $R^{2}$ of 0.68 and 0.85 respectively for the period of April to June. The results showed that the status of agricultural reservoir storage could be expressed with couple of meteorological factors. The prediction enhanced when the storage data are divided into periods rather than yearly mean and especially from the beginning time of paddy irrigation (April) to high decrease of reservoir storage (June) before Jangma.

Meteorological Field Generation Method for CALPUFF Model

  • Park, Ji-Hoon;Park, Geun-Yeong
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.30-38
    • /
    • 2018
  • CALPUFF is one of the recommended air pollution models by EPA with AERMOD. It has been used to simulate the ambient concentration of critical air pollutants as well as non-critical pollutants such as persistent organic matters and the organic materials causing odor. In this model, the air pollutants go through dispersion, transportation, chemical reaction, and deposition process. These mechanisms are significantly influenced by meteorological condition. This study produces the meteorological field in three different methods for the simulation of $SO_2$ using CALPUFF: 1) CALMET model by using both ground-level and aerological observation, 2) CALMET model by using MM5 results with NCEP/NCAR reanalyzed data, 3) CALMET model by using MM5 results in which FDDA is applied with NCEP/NCAR reanalyzed data as well as the meteorological data of Korea Meteorological Administration. As a result of CALPUFF model, the resolved concentration of $SO_2$ showed different behaviors in three cases. For the first case, the fluctuation of SO2 concentration was frequently observed while the fluctuation is reduced in the second and third cases. In addition, the maximum concentration of $SO_2$ in the first case was about 2~3 times higher than the second case, and about 4~6 times higher than the third case. These results can be caused by the accuracy of the resolved meteorological field. It is inferred that the meteorological field of the first case could be less accurate than other two cases. These results show that the use of correct meteorological data can improve the result of dispersion model. Moreover, the contribution of various sources such as point, line, and area sources on the ambient concentration of air pollutant can be roughly estimated from the sensitivity analysis.

Analysis on Vertical Structure of Sea Fog in the West Coast of the Korean Peninsula by Using Drone (드론을 활용한 한반도 서해 연안의 해무 연직구조 분석)

  • Jeon, Hye-Rim;Park, Mi Eun;Lee, Seung Hyeop;Park, Mir;Lee, Yong Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.307-322
    • /
    • 2022
  • A drone has recently got attention as an instrument for weather observation in lower atmosphere because it can produce the high spatiotemporal resolution weather data even though the weather phenomenon is inaccessible. Sea fog is a weather phenomenon occurred in lower atmosphere, and has observational limitations because it occurs on the sea. Therefore, goal of this study is to analyze the vertical structures about inflow, development and dispersion of sea fog using the high-resolution weather data with the meteorological sensor-equipped drone. This study observed sea fogs in the west coast of the Korean peninsula from March to October 2021 and investigated one sea fog inflowed into the coast on June 8th 2021. θe - qv diagrams (θe: equivalent potential temperature, qv: water vapor ratio) and vertical wind structures were analyzed. At inflow of sea fog, moist adiabatically stable layer was formed in 0-300 m and prevailing wind was switched from south-southwesterly to west-southwesterly under 120 m. Both changes are favorable for sea fog on the location. θe and qv plummeted in a layer 0-183 m. The inflowed sea fog developed from 183 m to 327 m by mixing with ambient atmosphere on top of sea fog. Also, strong mechanical turbulence near ground drove a vertical mixing under stable layer. At dispersion of sea fog, as θe on ground gradually increased, air condition was changed to neutral. Evaporation occurred on both bottom and top in sea fog. These results induced dissipation of sea fog.

Classification of Synoptic Meteorological Conditions for the Medium or Long Term Atmospheric Environmental Assessment in Urban Scale (도시규모 중·장기 대기질영향평가를 위한 종관기상조건의 분류)

  • Kim, Cheol-Hee;Son, Hye-Young;Kim, Ji-A
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.157-168
    • /
    • 2007
  • In case there is a need to run the multi-year urban scale air qulaity model, it is a difficult task due to the computational demand, requiring the statistical approach for the long time atmospheric environmental assessment. In an effort to approach toward long term urban assessment, the sixteen synoptic meteorological conditions are statistically classified from the estimated geostrophic wind speeds and directions of 850 hPa geopotential height field during 2000 ~ 2005. The geostrophic wind directions are subdivided into four even intervals (north, east, south, and west), geostrophic wind speeds into two classes(${\leq}5m/s$ and >5m/s), and daily mean cloud amount into 2 classes(${\leq}5/10$ and >5/10), which result into sixteen classes of the synoptic meteorological cases for each season. The frequency distributions for each 16 synoptic meteorological case are examined and some discussions on how these synoptic classifications can be used in the environmental assessment are presented.

Evaluation of High-Resolution Hydrologic Components Based on TOPLATS Land Surface Model (TOPLATS 지표해석모형 기반의 고해상도 수문성분 평가)

  • Lee, Byong-Ju;Choi, Young-Jean
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.357-365
    • /
    • 2012
  • High spatio-temporal resolution hydrologic components can give important information to monitor natural disaster. The objective of this study is to create high spatial-temporal resolution gridded hydrologic components using TOPLATS distributed land surface model and evaluate their accuracy. For this, Andong dam basin is selected as study area and TOPLATS model is constructed to create hourly simulated values in every $1{\times}1km^2$ cell size. The observed inflow at Andong dam and soil moisture at Andong AWS site are collected to directly evaluate the simulated one. RMSEs of monthly simulated flow for calibration (2003~2006) and verification (2007~2009) periods show 36.87 mm and 32.41 mm, respectively. The hourly simulated soil moisture in the cell located Andong observation site for 2009 is well fitted with observed one at -50 cm. From this results, the cell based hydrologic components using TOPLATS distributed land surface model show to reasonably represent the real hydrologic condition in the field. Therefore the model driven hydrologic information can be used to analyze local water balance and monitor natural disaster caused by the severe weather.

Feasibility Study on Sampling Ocean Meteorological Data using Stratified Method (층화추출법에 의한 해양기상환경의 표본추출 타당성 연구)

  • Han, Song-I;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • The infrared signature of a ship is largely influenced by the ocean environment of the operating area, which has been known to cause large changes in the signature. As a result, the weather condition has to be clearly set for an analysis of the infrared signatures. It is necessary to analyze meteorological data for all the oceans where the ship is supposed to be operated. This is impossibly costly and time consuming because of the huge size of the data. Therefore, the creation of a standard environmental variable for an infrared signature research is necessary. In this study, we compared and analyzed sampling methods to represent ocean data close to the Korean peninsula. In order to perform this research, we collected ocean meteorological records from KMA (Korea Meteorological Administration), and sampled these in numerous ways considering five variables that are known to affect the infrared signature. Specifically, a simple random sampling method for all the data and 1-D, 2-D, and 3-D stratified sampling methods were compared and analyzed by considering the mean square errors for each method.

On the Seasonal Variation of Urban Heat Island Intensity According to Meteorological Condition in Daegu (대구지역의 기상조건에 따른 도시열섬강도의 계절별 변화특성)

  • Ahn Ji-Suk;Kim Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.527-532
    • /
    • 2006
  • The purpose of this study is to clarify the characteristic of urban heat island intensity in urban area formed at a basin. Thermal environments for basin-type cities are influenced by significant topographic relief winds. In this study, we analyzed the diurnal variations of the heat island intensity according to meteorological condition and season using AWS(Automatic Weather observation System) data in Daegu Metropolitan area for 1 year(3/April, 2003 $\sim$ 2/April, 2004). In this study, we defined the urban heat island intensity as the air temperature difference between two points, the downtown and the suburban area. The suburban area is located at valley mouth around the western tip of Daegu. The results are summarized as follows; 1. The maximum heat island intensity was recorded at early morning under the meteorological conditions, calm and clear 2. The heat island intensity was strong in the order of winter, fall, spring and summer. 3. The heat island intensity came out minus values in the afternoon. This phenomenon is known as a com mon for basin-type cities. 4. The heat island intensity was twice or more in clear and calm than not so.

An Investigation of Synoptic Condition for Clear-Air Turbulence (CAT) Events Occurred over South Korea (한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구)

  • Min, Jae-Sik;Chun, Hye-Yeong;Kim, Jung-Hoon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.69-83
    • /
    • 2011
  • The synoptic condition of clear-air turbulence (CAT) events occurred over South Korea is investigated, using the Regional Data Assimilation and Prediction System (RDAPS) data obtained from the Korea Meteorological Agency (KMA) and pilot reports (PIREPs) collected by Korea Aviation Meteorological Agency (KAMA) from 1 Dec. 2003 to 30 Nov. 2008. Throughout the years, strong subtropical jet stream exists over the South Korea, and the CAT events frequently occur in the upper-level frontal zone and subtropical jet stream regions where strong vertical wind shears locate. The probability of the moderate or greater (MOG)-level turbulence occurrence is higher in wintertime than in summertime, and high probability region is shifted northward across the jet stream in wintertime. We categorize the CAT events into three types according to their generation mechanisms: i) upper-level front and jet stream, ii) anticyclonically sheared and curved flows, and iii) breaking of mountain waves. Among 240 MOG-level CAT events reported during 2003-2008, 103 cases are related to jet stream while 73 cases and 25 cases are related to the anticyclonic shear flow and breaking of mountain wave, respectively.