• Title/Summary/Keyword: Meteorological condition

Search Result 487, Processing Time 0.031 seconds

Formation and Chemical Characteristics of Dewfall in Western Busan Area (부산 서부지역의 이슬 생성과 화학적 특성)

  • Jeon Byung-Il;Hwang Yong-Sik;Park Moon-Po
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1079-1088
    • /
    • 2004
  • In order to understand chemical characteristics and dewfall formation in western Busan area, we analysed monthly distribution of dewfall, and investigated the correlation between dewfall formation amount and meteoro­logical factors. This study used the modified teflon plate $(1m{\times}1m)$ at Silla university in Busan from August 2002 to April 2003. In order to estimate qualitatively water soluble components, IC, ICP and UV methods for water soluble ions are also used respectively. Dewfall amount of sampling periods (47 day) collected 3.8 mm. Meteorological conditions for the formation of dewfall above $50\;g/m^{2}$ showed that temperature diurnal $range(^{\circ}C)\;was\;5.6^{\circ}C$ above, cloud amounts (1/10) at dawn of the sampling day was 7/10 below, mean wind speed at dawn (0~6hr) of the sampling day was 4.4 m/sec below, and mixing ratio at 6hr of the sampling day was 3.2 g/kg above. Distribution of water soluble ions in dewfall founded the highest concentration (206.1\;{\mu}eq/{\ell}\;for\;SO_{4}^{2-},\;42.4\;{\mu}eq/{\ell}\;for\;NH_{4}^{+},\;249.2\;{\mu}eq/{\ell}\;for\;Ca^{2+},\;and\;42.0\;{\mu}eq/{\ell}\;for\;Mg^{2+})$ during the March, the lowest concentration $(73.0\;{\mu}eq/{\ell}\;for\;SO_{4}^{2-},\;4.6\;{\mu}eq/{\ell}\;for\;NH_{4}^+\;and\;72.7\;{\mu}eq/{\ell}\;for\;Ca^{2+})$ during the August. Monthly equivalent ratio of $[SO_{4}^{2-}]/[NO_{3}^-]$ showed the highest value (4.99) during the October, the lowest value (1.84) during the August, and the mean value was 3.45.

Calculation of Soil Moisture and Evapotranspiration of KLDAS applying Ground-Observed Meteorological Data (지상관측 기상자료를 적용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • Park, Gwangha;Kye, Changwoo;Lee, Kyungtae;Yu, Wansik;Hwang, Eui-ho;Kang, Dohyuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1611-1623
    • /
    • 2021
  • Thisstudy demonstratessoil moisture and evapotranspiration performance using Korea Land Data Assimilation System (KLDAS) under Korea Land Information System (KLIS). Spin-up was repeated 8 times in 2018. In addition, low-resolution and high-resolution meteorological data were generated using meteorological data observed by Korea Meteorological Administration (KMA), Rural Development Administration (RDA), Korea Rural Community Corporation (KRC), Korea Hydro & Nuclear Power Co.,Ltd. (KHNP), Korea Water Resources Corporation (K-water), and Ministry of Environment (ME), and applied to KLDAS. And, to confirm the degree of accuracy improvement of Korea Low spatial resolution (hereafter, K-Low; 0.125°) and Korea High spatial resolution (hereafter, K-High; 0.01°), soil moisture and evapotranspiration to which Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and ASOS-Spatial (ASOS-S) used in the previous study were applied were evaluated together. As a result, optimization of the initial boundary condition requires 2 time (58 point), 3 time (6 point), and 6 time (3 point) spin-up for soil moisture. In the case of evapotranspiration, 1 time (58 point) and 2 time (58 point) spin-ups are required. In the case of soil moisture to which MERRA-2, ASOS-S, K-Low, and K-High were applied, the mean of R2 were 0.615, 0.601, 0.594, and 0.664, respectively, and in the case of evapotranspiration, the mean of R2 were 0.531, 0.495, 0.656, and 0.677, respectively, indicating the accuracy of K-High was rated as the highest. The accuracy of KLDAS can be improved by securing a large number of ground observation data through the results of this study and generating high-resolution grid-type meteorological data. However, if the meteorological condition at each point is not sufficiently taken into account when converting the point data into a grid, the accuracy is rather lowered. For a further study, it is expected that higher quality data can be produced by generating and applying grid-type meteorological data using the parameter setting of IDW or other interpolation techniques.

Forecast Sensitivity Analysis of An Asian Dust Event occurred on 6-8 May 2007 in Korea (2007년 5월 6-8일 황사 현상의 예측 민감도 분석)

  • Kim, Hyun Mee;Kay, Jun Kyung
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.399-414
    • /
    • 2010
  • Sand and dust storm in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. An Asian dust event occurred on 6-8 May 2007 is chosen to investigate how sensitive the Asian dust transport forecast to the initial condition uncertainties and to interpret the characteristics of sensitivity structures from the viewpoint of dynamics and predictability. To investigate the forecast sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to Asian dust transports are dry energy forecast error and lower tropospheric pressure forecast error. The results show that the sensitive regions for the dry energy forecast error and the lower tropospheric pressure forecast error are initially located in the vicinity of the trough and then propagate eastward as the surface low system moves eastward. The vertical structures of the adjoint sensitivities for the dry energy forecast error are upshear tilted structures, which are typical adjoint sensitivity structures for extratropical cyclones. Energy distribution of singular vectors also show very similar structures with the adjoint sensitivities for the dry energy forecast error. The adjoint sensitivities of the lower tropospheric pressure forecast error with respect to the relative vorticity show that the accurate forecast of the trough (or relative vorticity) location and intensity is essential to have better forecasts of the Asian dust event. Forecast error for the atmospheric circulation during the dust event is reduced 62.8% by extracting properly weighted adjoint sensitivity perturbations from the initial state. Linearity assumption holds generally well for this case. Dynamics of the Asian dust transport is closely associated with predictability of it, and the improvement in the overall forecast by the adjoint sensitivity perturbations implies that adjoint sensitivities would be beneficial in improving the forecast of Asian dust events.

Development of Dynamical Seasonal Prediction System for Northern Winter using the Cryospheric Condition of Late Autumn (가을철 빙권 조건을 활용한 겨울철 역학 계절 예측시스템의 개발)

  • Shim, Taehyoun;Jeong, Jee-Hoon;Kim, Baek-Min;Kim, Seong-Joong;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In recent several years, East Asia, Europe and North America have suffered successive cold winters and a number of historical records on the extreme weathers are replaced with new record-breaking cold events. As a possible explanation, several studies suggested that cryospheric conditions of Northern Hemisphere (NH), i.e. Arctic sea-ice and snow cover over northern part of major continents, are changing significantly and now play an active role for modulating midlatitude atmospheric circulation patterns that could bring cold winters for some regions in midlatitude. In this study, a dynamical seasonal prediction system for NH winter is newly developed using the snow depth initialization technique and statistically predicted sea-ice boundary condition. Since the snow depth shows largest variability in October, entire period of October has been utilized as a training period for the land surface initialization and model land surface during the period is continuously forced by the observed daily atmospheric conditions and snow depths. A simple persistent anomaly decaying toward an averaged sea-ice condition has been used for the statistical prediction of sea-ice boundary conditions. The constructed dynamical prediction system has been tested for winter 2012/13 starting at November 1 using 16 different initial conditions and the results are discussed. Implications and a future direction for further development are also described.

The Assessment of Socioeconomic Droughts Using a Water Excess Deficiency Index (용수과부족지수(WEDI)를 이용한 사회경제학적 가뭄평가)

  • Yoo, Ji Young;Park, Jong Yong;Kim, Tae-Woong;Park, Moo Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.253-264
    • /
    • 2011
  • Drought assessment is usually performed qualitatively and/or quantitatively after defining a drought from meteorological, agricultural, hydrological, and socioeconomic perspective. Most of the drought analyses focus on meteorological, agricultural, and hydrological droughts, whereas the socioeconomic drought evaluation has been not actively performed since it needs different aspects. In this study, after defining a socioeconomic drought applicable to assess droughts in Korea, we suggested Water Excess Deficiency Index (WEDI) as an useful tool to evaluate socioeconomic droughts, based on water demand condition and water supply condition. This study verified the validity of WEDI by comparing with other drought indices (SPI, PDSI) and historical drought condition in Gyeongsang-do in 2001. The results indicated that the WEDI can be used to assess regional droughts in a socioeconomic perspective.

Numerical Simulation of the Effects of Moisture on the Reinforcement of a Tropopause Fold

  • Lee, Hong-Ran;Kim, Kyung-Eak;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.630-645
    • /
    • 2009
  • The tropopause fold event that took place on January 1, 1997 over mid-region on the Korean Peninsula is examined by means of a numerical simulation based on a Mesoscale Model (MM5). The purpose of this paper is to investigate the effects of moisture in reinforcing a tropopause fold linked to an explosive cyclone. Two types of simulations were carried out; 1) simulations for moist conditions in which full physical and dynamic processes are considered and 2) simulations for dry conditions in which cumulus parameterization and cloud microphysics process are excluded. The results of the moist condition simulations demonstrate that the intensity of the central pressure of the cyclone was overestimated compared with the observed values and that the location of the center and the pressure deepening rates (-17 hPa/12 hr) complied with the observed values. The potential vorticity (PV) anomaly on the isentropic surface at 305 K continued to move in a southeast direction on January 1, 1997 and thus created a single tube of tropopause fold covering the northern and the middle area of the Korean Peninsula and reaching the ground surface at 0300 UTC and 0600 UTC. The results of the dry condition simulations show that the tropopause descended to 500 and 670 hPa in 0300 and 0600 UTC, respectively at the same location for the moist condition simulation; however, there was no deep tropopause fold observed. A comparison of the simulated data between the moist and the dry conditions suggests that a deep tropopause fold should happen when there is sufficient moist in the atmosphere and significantly large PV in the lower atmosphere pulls down the upper atmosphere rather than when the tropopause descends itself due to dynamic causes. Thus, it is estimated that moisture in the atmosphere should have played a crucial role in a deep tropopause fold process.

Effect of Meteorological Condition during Ripening on the Grain Shattering of Rice Plant (등숙기 기상조건이 벼알의 탈립성에 미치는 영향)

  • J. C. Shin;Y. W. Kwon;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.229-234
    • /
    • 1982
  • Environmental factors are known in general to influence much on the development of abscission layer and thereby on shedding of plant parts. The present study was carried out to determine the effect of meterological condition during ripening on the grain shatterability of rice plants at harvest. Different meteorological conditions were obtained by shifting transplanting timing of 40 days old rice seedlings 4 times with a 15 days-interval. Grain shatterability was measured as tensile strength of rice grains: it varied within a range of 214g. to 251g. in a practically non-shattering Japonica variety'Jinheung' and l27.5g. to 204g. in an easy shattering Indica \times Japonica progeny variety'Taeback'. In view of field loss of rice, the variation in tensile strength with time of transplanting and harvest did not matter in Jinheung, but was an important factor in Taeback. In Taeback the tensile strength was significantly correlated positively with mean, maximum and minimum air temperature and relative humidity during a certain period of grain ripening, especially during 30 days period before harvest, but diurnal range of air temperature showed a significant, negative correlation with it. The tensile strength seemed to be more closely related with min. air temperature than max. air temperature, and it was not significantly correlated with radiation amount during any period of pre-harvest. Meteorological effect on grain shatterability may vary with variety, but temperature regime during ripening appears to play major role among the meteorological factors in easy shattering and more thermophilic Indica \times Japonica varieties: lower the temperature, greater the shatterability.

  • PDF

A Study on the Relationship between Meteorological Condition and Wave Measurement using X-band Radar (X-밴드 레이더 파랑 계측과 기상 상태 연관성 고찰)

  • Youngjun, Yang
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.517-524
    • /
    • 2022
  • This paper analyzes wave measurement using X-band navigation (ship) radar, changes in radar signal due to snowfall and precipitation, and factors that obstruct wave measurement. Data obtained from the radar installed at Sokcho Beach were used, and data from the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency were used for the meteorological data needed for comparative verification. Data from the Korea Meteorological Administration are measured at Sokcho Meteorological Observatory, which is about 7km away from the radar, and data from the Korea Hydrographic and Oceanographic Agency are measured at a buoy about 3km away from the radar. To this point, changes in radar signals due to rainfall or snowfall have been transmitted empirically, and there is no case of an analysis comparing the results to actual weather data. Therefore, in this paper, precipitation, snowfall data, CCTV, and radar signals from the Korea Meteorological Administration were comprehensively analyzed in time series. As a result, it was confirmed that the wave height measured by the radar according to snowfall and rainfall was reduced compared to the actual wave height, and a decrease in the radar signal strength according to the distance was also confirmed. This paper is meaningful in that it comprehensively analyzes the decrease in the signal strength of radar according to snowfall and rainfall.

Influences of Meteorological Conditions of Harvest Time on Water-Soluble Vitamin Contents and Quality Attributes of Oriental Melon (수확기 기상환경이 참외의 수용성비타민 함량 및 품질에 미치는 영향)

  • Kim, Hye-Suk;Jung, Ji-Yun;Kim, Hye-Kyung;Ku, Kang-Mo;Suh, Jun-Kyu;Park, You-Mie;Kang, Young-Hwa
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.290-296
    • /
    • 2011
  • In our study, oriental melon (Cucumis melo L. var makuwa Makino) was harvested in Seongju at major harvest time from June to August with the intervals of one month in 2009. In order to elucidate the effect of meteorological condition of harvest time on fruit quality and water-soluble vitamin contents of oriental melon, quality attributes including weight, hardness, and sugar were examined and water-soluble vitamin contents such as folic acid and vitamin C were analyzed. Fruit quality factors and water-soluble vitamin contents were the highest in June when rainfall was low and solar radiation was high. Meanwhile, both of them were the lowest in July when it was the worst weather condition for cultivation of oriental melon. After then, the contents of folic acid and vitamin C increased when the rainfall had decreased in Aug. The contents of both vitamins were much high in placenta than peel and flesh. In conclusion, the meteorological condition of the summer season by torrential rains and lack of solar radiation influence water-soluble vitamin contents, especially folic acid contents of oriental melon as well as quality attributes such as hardness and sugar.

Comparison and Analysis of Drought Index based on MODIS Satellite Images and ASOS Data for Gyeonggi-Do (경기도 지역에 대한 MODIS 위성영상 및 지점자료기반 가뭄지수의 비교·분석)

  • Yu-Jin, KANG;Hung-Soo, KIM;Dong-Hyun, KIM;Won-Joon, WANG;Han-Eul, LEE;Min-Ho, SEO;Yun-Jae, CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.1-18
    • /
    • 2022
  • Currently, the Korea Meteorological Administration evaluates the meteorological drought by region using SPI6(standardized precipitation index 6), which is a 6-month cumulative precipitation standard. However, SPI is an index calculated only in consideration of precipitation at 69 weather stations, and the drought phenomenon that appears for complex reasons cannot be accurately determined. Therefore, the purpose of this study is to calculate and compare SPI considering only precipitation and SDCI (Scaled Drought Condition Index) considering precipitation, vegetation index, and temperature in Gyeonggi. In addition, the advantages and disadvantages of the station data-based drought index and the satellite image-based drought index were identified by using results calculated through the comparison of SPI and SDCI. MODIS(MODerate resolution Imaging Spectroradiometer) satellite image data, ASOS(Automated Synoptic Observing System) data, and kriging were used to calculate SDCI. For the duration of precipitation, SDCI1, SDCI3, and SDCI6 were calculated by applying 1-month, 3-month, and 6-month respectively to the 8 points in 2014. As a result of calculating the SDCI, unlike the SPI, drought patterns began to appear about 2-month ago, and drought by city and county in Gyeonggi was well revealed. Through this, it was found that the combination of satellite image data and station data increased efficiency in the pattern of drought index change, and increased the possibility of drought prediction in wet areas along with existing dry areas.