• Title/Summary/Keyword: Meteorological Factors

Search Result 812, Processing Time 0.02 seconds

Precipitation Characteristics in Mountainous Regions During Changma Period in 2023 (2023년 장마기간 동안 산악지역의 강우 특성)

  • Inhye Kim;Keunchang Jang;Byung Oh Yoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.3
    • /
    • pp.161-173
    • /
    • 2024
  • In South Korea, 50-65% of the annual precipitation is concentrated during the summer monsoon season, which is called Changma. In 2023, extreme precipitation was observed during Changma period, and was recorded the highest amount in southern part of Korea. Extreme precipitation in forest region is one of significant factors related to the landslide. Therefore, accurate monitoring and understanding of precipitation patterns are crucial for preventing the landslide disasters in Changma period. This study investigated the precipitation patterns including precipitation intensity, duration, and total amount in mountainous and non-mountainous regions during the Changma period using dataset observed from the Korea Forest Service's Automatic Mountain Meteorology Observation Station (AMOS) and the Korea Meteorological Administration (KMA). Precipitation map produced from the Modified Korean-Parameter elevation Regressions an Independent Slopes Model (MK-PRISM) was also used to verify precipitation patterns in areas affected by landslides in Gyeongsangbuk-do province. The results used from precipitation observations revealed that the total amount of precipitation was greater at elevations such as mountainous regions. In particular, extreme precipitation events such as precipitation duration exceeding 50 hours with amount of over 300 mm and heavy rainfalls of over 30 mm/hr occurred at landslide areas including Mungyeong, Bonghwa, and Yeongju in Gyeongsangbuk-do province. Total amount of precipitation produced by MK-PRISM in these areas during Changma period were more than double compared with 30 years mean values obtained from KMA. The results conducted in this study indicate that it is essential to establish the thresolds considering recent precipitation patterns to effectively prepare and prevent for landslide disasters.

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea (국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증)

  • Park, Ki Jin;Kim, Ki Young;Kim, Chan Young;Park, Jong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.637-648
    • /
    • 2024
  • The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.