• 제목/요약/키워드: Meteorological Element

검색결과 74건 처리시간 0.028초

Establishing non-linear convective heat transfer coefficient

  • Cuculic, Marijana;Malic, Neira Toric;Kozar, Ivica;Tibljas, Aleksandra Deluka
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.107-119
    • /
    • 2022
  • The aim of the work presented in this paper is development of numerical model for prediction of temperature distribution in pavement according to the measured meteorological parameters, with introduction of non-linear heat transfer coefficient which is a function of temerature difference between the air and the pavement. Developed model calculates heat radiated from the pavement back in the air, which is an important part of the heat trasfer process in the open air surfaces. Temperature of the pavement surface, heat radiation together with many meteorological parameters were measured in series during two years in order to validate the model and calibrate model parameters. Special finite element method for temperature heat transfer towards the soil together with the time integration scheme are used to solve the governing equation. It is proved that non-linear heat transfer coefficient, which is a function of time and temperature difference between the air and the pavement, is required to decribe this phenomena. Proposed model includes heat tranfer coefficient callibration for specific climate region, through the iterative inverse procedure.

합성 박스형 교량의 온도 예측 (The Prediction of Temperature in Composite Box Girder Bridges)

  • 장승필;임창균
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.431-440
    • /
    • 1997
  • 본 논문에서는 교량 단면 내의 시간 종속적 온도 분포를 결정하기 위해, 기존의 열 전달 이론 및 태양 에너지 전달에 대한 이론을 바탕으로 기상관측소 및 현장에서 측정한 기상 자료로부터 교량 온도의 예측에 관한 이론적 모델에 대해 기술하였다. 특히 이 모텔에서는 주간에 교량의 온도 상승에 지배적인 영향을 미치는 태양일사(solar radiation)에 대해 태양 에너지 관련 분야의 여러 실험적 연구 결과를 바탕으로 태양일사량의 계산에 대해 기존에 연구되어 있는 식들 중에서 가장 적합한 식을 제시하였다. 이 해석 모델의 타당성은 사당 고가차도의 장기 계측된 온도 측정 결과와 비교 검토되었다. 또한 장기간 측정된 온도 결과로부터 교량 온도 예측에 대한 해석적 기준(analytical criteria)을 제시하기 위해, 교량의 축 방향 신축의 원인이 되는 단면평균온도, 그리고 곡률 변형을 유발하는 단면온도차 등 교량 단면의 온도 분포와 관련된 변수들과 대기온도, 일사량 등 기상 자료와 관련된 변수들 간의 선형 상관관계(linear correlation)에 대해 기술하였다.

  • PDF

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

국가 기후변화 적응 전략 수립 방안에 관한 연구 (Study on Plans for the Establishment of Strategy on Climate Change Adaptation in Korea)

  • 권원태;백희정;최경철;정효상
    • 대기
    • /
    • 제15권4호
    • /
    • pp.213-227
    • /
    • 2005
  • The global mean surface temperature has already increased by $0.6{\pm}0.2^{\circ}C$ over the last century, and warming in Korea is approximately twice as large as the global average. The Intergovernmental Panel on Climate Change (IPCC) has concluded that the majority of warming over the past 50 years could be attributed to human activities (IPCC, 2001a). In addition, the global surface temperature is expected to increase by 1.4 to $5.8^{\circ}C$ depending on the greenhouse gas emission scenarios during the $21^{st}$ century.Climate change resulting from increased greenhouse gas concentrations has the potential to harm societies and ecosystems. Reductions in emissions of greenhouse gases and their concentration in the atmosphere will reduce the degree and likelihood of significant adverse conditions due to the anticipated climate change. Mitigation policy has generally been the primary focus of public attention and policy efforts on climate change. However, some degree of climate change is inevitable due to the combination of continued increases in emissions and the inertia of the global climate system. Adaptation actions and strategies are needed for a complementary approach to mitigation. The United Nations Framework Convention on Climate Change (UNFCCC) currently addresses vulnerability and adaptation in the context of climate change negotiations and in future adaptation may be an important element of work under the Kyoto Protocol. There are several on-going programs to develop effective adaptation strategies and their implementation. But in general, many other countries are still on an initiating stage. The climate change science programs of the United States, Japan, England, and Germany are initiated to understand the current status of climate change science and adaptation researches in the developed countries. In this study, we propose the improvement on systems in policy and research aspects to effectively perform the necessary functions for development of nation-wide adaptation measures and their implementation. In policy aspect, the Korean Panel on Climate Change (KPCC) is introduced as a coordinating mechanism between government organizations related with climate change science, impact assessment and adaptation. Also in research aspect, there is a strong consensus on the need for construction of a national network on climate change research as trans-disciplinary research network.

겨울철 ESSAY (Experiment on Snow Storms At Yeongdong) 기간 동안 수증기량과 강수량의 연관성 분석 (Analysis of the Relationship of Water Vapor with Precipitation for the Winter ESSAY (Experiment on Snow Storms At Yeongdong) Period)

  • 고아름;김병곤;은승희;박영산;최병철
    • 대기
    • /
    • 제26권1호
    • /
    • pp.19-33
    • /
    • 2016
  • Water vapor in the atmosphere is an important element that generates various meteorological phenomena and modifies a hydrological cycle. In general, the Yeongdong region has a lot of snow compared to the other regions in winter due to the complex topography and an adjacent East Sea. However, the phase change from water vapor to ice cloud and further snowfall has little been examined in detail. Therefore, in this study, we investigated phase change of liquid water in terms of a quantitative budget as well as time lag of water vapor conversion to snowfall in the ESSAY (Experiment on Snow Storms At Yeongdong) campaign that had been carried out from 2012 to 2015. First, we classified 3 distinctive synoptic patterns such as Low Crossing, Low Passing, and Stagnation. In general, the amount of water vapor of Low Crossing is highest, and Low Passing, Stagnation in order. The snowfall intensity of Stagnation is highest, whereas that of Low Crossing is the lowest, when a sharp increase in water vapor and accordingly a following increase in precipitation are shown with the remarkable time lag. Interestingly, the conversion rate of water vapor to snowfall seems to be higher (about 10%) in case of the Stagnation type in comparison with the other types at Bukgangneung, which appears to be attributable to significant cooling caused by cold surge in the lower atmosphere. Although the snowfall is generally preceded by an increase in water vapor, its amount converted into the snowfall is also controlled by the atmosphere condition such as temperature, super-saturation, etc. These results would be a fundamental resource for an improvement of snowfall forecast in the Yeongdong region and the successful experiment of weather modification in the near future.

Multicity Seasonal Air Quality Index Forecasting using Soft Computing Techniques

  • Tikhe, Shruti S.;Khare, K.C.;Londhe, S.N.
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.83-104
    • /
    • 2015
  • Air Quality Index (AQI) is a pointer to broadcast short term air quality. This paper presents one day ahead AQI forecasting on seasonal basis for three major cities in Maharashtra State, India by using Artificial Neural Networks (ANN) and Genetic Programming (GP). The meteorological observations & previous AQI from 2005-2008 are used to predict next day's AQI. It was observed that GP captures the phenomenon better than ANN and could also follow the peak values better than ANN. The overall performance of GP seems better as compared to ANN. Stochastic nature of the input parameters and the possibility of auto-correlation might have introduced time lag and subsequent errors in predictions. Spectral Analysis (SA) was used for characterization of the error introduced. Correlational dependency (serial dependency) was calculated for all 24 models prepared on seasonal basis. Particular lags (k) in all the models were removed by differencing the series, that is converting each i'th element of the series into its difference from the (i-k)"th element. New time series is generated for all seasonal models in synchronization with the original time line & evaluated using ANN and GP. The statistical analysis and comparison of GP and ANN models has been done. We have proposed a promising approach of use of GP coupled with SA for real time prediction of seasonal multicity AQI.

경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성 (Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain)

  • 이영희
    • 대기
    • /
    • 제25권4호
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

Moisture distribution in concrete subjected to rain induced wetting-drying

  • Sarkar, Kaustav;Bhattacharjee, Bishwajit
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.635-656
    • /
    • 2014
  • A rational estimation of moisture distribution in structural concrete is vital for predicting the possible extent and rate of progression of impending degradation processes. The paper proposes a numerical scheme for analysing the evolution of moisture distribution in concrete subjected to wetting-drying exposure caused by intermittent periods of rainfall. The proposed paradigm is based on the stage wise implementation of non-linear finite element (FE) analysis, with each stage representing a distinct phase of a typical wet-dry cycle. The associated boundary conditions have been constituted to realize the influence of various meteorological elements such as rain, wind, relative humidity and temperature on the exposed concrete surface. The reliability of the developed scheme has been demonstrated through its application for the simulation of experimentally recorded moisture profiles reported in published literature. A sensitivity analysis has also been carried out to study the influence of critical material properties on simulated results. The proposed scheme is vital to the service life modelling of concrete structures in tropical climates which largely remain exposed to the action of alternating rains.

화학사고의 일차 대응을 위한 피해영향범위 산정 개선 방안 (Improvement of Damage Range Calculation for First Response to Chemical Accidents)

  • 이덕재;안재현;송창근
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.59-65
    • /
    • 2017
  • Calculation of the damage impact of chemical accidents is an important element in site, and the initial isolation distance and the protective action distances are significant factors in coping the chemical accident. In this study, three major cities that represent each Province were selected, and the safety distances were calculated considering regional climate conditions. The results were compared with the prescribed values in Emergency Response Guidebook. It is concluded that the regional meteorological conditions such as temperature, vapour pressure, relative humidity, wind speed, and cloud cover should be reflected in estimating the initial isolation distance and the protective action distance.

Review of the Current Status of Pasture-based Livestock Industry in Mongolia

  • Nyamgarav Tseveg-Ochir;Ki-Won Lee;Jae Hoon Woo;Bo Ram Choi
    • 한국초지조사료학회지
    • /
    • 제44권1호
    • /
    • pp.58-63
    • /
    • 2024
  • Mongolian herders rely significantly on grazing their animals, such as goats, sheep, cattle, horses, yaks, and camels, in broad rangelands throughout the year. The availability of appropriate forage, the amount of hay and forage to be kept, and whether the animals will acquire physical strength from the pasture to make it through the impending cold season are all determined by the meteorological conditions of the year. Herders' principal source of income is animals, therefore preventing mortality is a top priority. In Mongolia, meadows are a major element determining cattle live weight. However, in the summer of 2022, Mongolia faced a drought, which resulted in inadequate pastures and starved cattle. Livestock might lose weight in these situations due to a lack of supplemental feeding.