• Title/Summary/Keyword: Metazooplankton

Search Result 5, Processing Time 0.019 seconds

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists

  • Lee, Moo Joon;Jeong, Hae Jin;Kim, Jae Seong;Jang, Keon Kang;Kang, Nam Seon;Jang, Se Hyeon;Lee, Hak Bin;Lee, Sang Beom;Kim, Hyung Seop;Choi, Choong Hyeon
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.285-308
    • /
    • 2017
  • Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in many countries. To investigate the roles of metazooplankton in red tide dynamics of C. polykrikoides in the South Sea of Korea, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals from May to November 2014. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The mean abundance of total metazooplankton at each sampling time during the study was 297-1,119 individuals $m^{-3}$. The abundance of total metazooplankton was significantly positively correlated with that of phototrophic dinoflagellates (p < 0.01), but it was not significantly correlated with water temperature, salinity, and the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates (p > 0.1). Thus, dinoflagellate red tides may support high abundance of total metazooplankton. Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated. The calculated maximum grazing coefficients attributable to calanoid copepods on C. polykrikoides and Prorocentrum spp. were 0.018 and $0.029d^{-1}$, respectively. Therefore, calanoid copepods may not control populations of C. polykrikoides or Prorocentrum spp. Furthermore, the maximum grazing coefficients attributable to calanoid copepods on the heterotrophic dinoflagellates Polykrikos spp. and Gyrodinium spp., which were grazers on C. polykrikoides and Prorocentrum spp., respectively, were 0.008 and $0.047d^{-1}$, respectively. Therefore, calanoid copepods may not reduce grazing impact by these heterotrophic dinoflagellate grazers on populations of the red tide dinoflagellates.

Salinity Effects on the Survival of the Metazooplankton in the Coastal Waters off the Seamankeum Areas

  • Kim, Seong-Taek;Kim, Jong-Hyeok;Pae, Se-Jin;Jeong, Hae-Jin
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.211-215
    • /
    • 2003
  • A huge freshwater reservoir (ca. 12,000 ha) will be created when the construction of a 33­km dike on a huge mud flat of the Saemankeum areas is established. A large quantity of freshwater will emerge to the adjacent sea from the reservoir through two big gates. Marine organisms outside the dike are expected to frequently experience low salinity waters. To investigate the salinity effects on the dominant metazooplankton in the coastal waters off Saemankeum areas, we measured the survival (Survival 1H and Survival 24H) of 11 different taxa (the copepods Acartia omorii, A. pacifica, Calanus sinicus, Centropages abdominalis, Paracalanus indicus, Pseudodiaptomus inopinus, Tortanus forcipatus, and a hydromedusa, and barnacle nauplius, polychaeta larva, and a chaetognath Sagitta sp.) at salinities of 0, 5, 10, 15, 20, 25, 30, 35, and 40 psu when the organisms were exposed for 1 and 24 h, respectively. Survival 1Hs of P. inopinus and barnacle nauplius were 100% between 5 and 35 psu, while they were 0% at salinities of 0 and 40 psu. Survival 1Hs of A. omorii and A. pacifica, P. indicus, T. forcipatus, and polychaeta larva were 100% at $salinities\;\geq\;10$ psu, while they were 0% at lower salinities. Survival 1Hs of a hydromedusa and Sagitta sp. were 100% at $salinities\;\geq\;15$ psu, while they were 0% at lower salinities. Survival 1H of C. abdominalis and C. sinicus was 100% at $salinities\;\geq\;20$ psu, while they were 0% at lower salinities. Survival 24Hs of A. omorii, A. pacifica, C. abdominalis, barnacle nauplius, and polychaeta larva were the same as Survival 1 Hs at the same salinity, while those of the other metazooplankton were lower than Survival 1Hs. The results of the present study suggest that low salinity water emerging from big gates may cause the death of the metazooplankton, but the salinities at which death of the metazooplankton occurs may differ by species.

The Spring Metazooplankton Dynamics in the River-Reservoir Hybrid System (Nakdong River, Korea): Its Role in Controlling the Phytoplankton Biomass (강-저수지 복합형 시스템내 봄 동물플랑크톤의 역동성 (낙동강, 한국): 식물플랑크톤 생체량 조절자로서의 역할)

  • Chang, Kwang-Hyeon;Jeong, Kwang-Seuk;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.420-426
    • /
    • 2003
  • During a three-year study (2000-2002), dramatic changes in the phytoplankton biomass and high transparency were repeatedly observed during mid-spring in the lower part of the Nakdong River. Rotifers (Brachionus, Keratella, Polyarthra) , sharply increased toward the middle and end of spring. As hydrologic retention time increased (to near 20 days) and water temperature increased from $10^{\circ}C$ to > $20^{\circ}C$ toward the end of spring, small cladocerans noticeably increased. Once phytoplankton biomass passed their peak stage in the mid-spring, a short period (one or two weeks) of relatively low phytoplankton biomass and high Secchi transparencies occurred. Grazing by the zooplankton was highest in spring, thus, it seems that high grazing activities of zooplankton grazing regulated phytoplankton dynamics in the river. The results indicate that the role of zooplankton grazing in controlling the phytoplankton biomass becomes more important during the spring when river water is relatively stagnant.

Marine Plankton in Ballast Water of Ship Entering Korea (한국에 입항한 선박 밸러스트 수에 존재하는 해양 부유생물)

  • Yoo, Jeong-Kyu;Song, Tae-Yoon;Hong, Hyun-Pyo;Jeong, Kyung-Mi;Myung, Chul-Soo
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2006
  • Various marine plankton were observed in the ballast water of vessels entering Incheon and Busan harbors. The ballast water of which age ranged from 2 to 54 days originated from the coastal waters of New Zealand, Taiwan, Singapore, Japan, Hong Kong and Pakistan, and from the Pacific Ocean. The total number of marine plankton taxa in 9 ballast tanks of different ships was 170: 90 phytoplankton, 24 protozoa and 56 zooplankton. The most diverse taxonomic groups were diatoms in phytoplankton, ciliates in protozoa and copepods in zooplankton. Classifying the specimens by size, above 50% of the number species of phytoplankton belonged to the size range between 50 and 150 Un. Protozoa and metazooplankton were found frequently in the size range between 50 and $120{\mu}m$ and 500 and $1,000{\mu}m$, respectively. The relationship between the species number and the age of ballast water was not significant. This is because of difference of filtration amounts derived from discordance of collecting samples. Among plankton observed in ballast water, some harmful algae and non-indigenous aquatic species were identified. Therefore, we need to investigate whether these species can inhabit in Korean coastal waters in further study.