• Title/Summary/Keyword: Metatarsophalangeal Joint Tilt Angle

Search Result 2, Processing Time 0.017 seconds

Establishment of Design Variable of Leg Stiffness Artificial Tendon Actuator ($LeSATA^{TM}$) for Actual Control in Dorsiflexion of Metatarsophalangeal Joint at the Initial Contact while the Bi-pedal Human Walking : (1) Realization of Lagrangian Equation and Impulsive Constraint (2족 보행시 중족지절관절 초기접지기 배측굴곡의 능동적 통제를 위한 Leg Stiffness Artificial Tendon Actuator($LeSATA^{TM}$)의 설계변수 확립 : (1) Lagrangian 방정식 및 Impulsive Constraint 적용법 구현)

  • Kim, Cheol-Woong;Han, Gi-Bong;Eo, Eun-Kyoung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2010.11a
    • /
    • pp.651-652
    • /
    • 2010
  • PDF

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.