• Title/Summary/Keyword: Metarhizium anisopliae

Search Result 47, Processing Time 0.037 seconds

Evaluation of Insecticidal Efficacy of Six Eco-friendly Agricultural Materials and Metarhizium anisopliae against Ramulus mikado (대벌레(Ramulus mikado)에 대한 유기농업자재 6종과 녹강균(Metarhizium anisopliae)의 살충 효과 평가)

  • Jong-Kook Jung;Bok-Nam Jung;Cha Young Lee;Keonhee E. Kim;Junheon Kim;Young Su Lee;Ji-Hyun Park
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.117-125
    • /
    • 2023
  • Outbreaks of Ramulus mikado (Insecta: Phasmatodea: Phasmatidae) in the hilly areas of Mt. Bongsan, Mt. Cheonggye, and elsewhere in Seoul and Gyeonggi occurred from 2020 to 2021, causing serious defoliation. We evaluated the insecticidal effects of six eco-friendly organic materials and the insect-pathogenic fungus Metarhizium anisopliae against R. mikado. The fungus was isolated from naturally dead bodies of R. mikado in forest ecosystems. The results revealed that three eco-friendly organic materials containing azadirachtin or geraniol as active ingredients showed high mortality in the range of 85.2%-100%, which were rates similar to that of the chemical insecticide fenitrothion emulsifiable concentrate. All R. mikado adults that were sprayed with a conidial suspension of M. anisopliae at different concentrations were killed within a few days. In conclusion, three eco-friendly organic materials and M. anisopliae could be good alternatives to chemical insecticides.

Pathogenicities of Entomopathogenic Fungi, Beauveria bassiana and Metarhizium anisopliae against Lepidopterous Insect Pests, Agrotis segetum, Artogeia rapae, Mamestra brassieae, Plutella xylostella, Spodoptera exigua and Spodoptera litura (나비목 해충에 대한 곤충병원성곰팡이, Beauveria bassiana와 Metarhizium anisopliae의 병원성)

  • Yun Jae-Su;Kim Hyeong-Hwan;Kim Do-Wan;Lee Sang Myeong;Kim Dong-Soo;Lee Dong-Woon
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.4
    • /
    • pp.221-229
    • /
    • 2004
  • Biological control of lepidopterous insect pests, Agrotis segetum, Artogeia rapae, Mamestra brassicae, Plutella xylostella, Spodoptera exigua, and S. litura with entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae isolated from Gyeongbuk province were investigated. Mean lethal concentration ($LC_50$) values of B. bassiana and M. anisopliae against $2\cdot3rd$ instar of A. segetum larvae were $1.2\times10^7\;conidia/m\ell$ and $5.2\times10^6\;conidia/m\ell$, respectively. $LC_50$ values of B. bassiana and M. anisopliae against $2\cdot3rd$ instar of A, rapae larvae were $1.2\times10^7\;conidia/m\ell$ and $5.2\times10^6\;conidia/m\ell$, respectively. $LC_50$ values of B. bassiana and M. anisopliae against $2\cdot3rd$ instar of M. brassicae and P. xylostella, larvae were $1.5\times10^6\;conidia/m\ell$, $9.7\times10^5\;conidia/m\ell$, $3.0\times10^6\;conidia/m\ell$ and $1.4\times10^6\;conidia/m\ell$, respectively. $LC_50$ values of B. bassiana and M. anisopliae against $2\cdot3rd$ instar of S. exigua, and S. litura larvae were $6.3\times10^6 \;conidia/m\ell$, $2.6\times10^6\;conidia/m\ell$, $1.6\times10^7\;conidia/m\ell$ and $3.4\times10^6\;conidia/m\ell$ respectively.

Soil Application of Metarhizium anisopliae JEF-314 Granules to Control, Flower Chafer Beetle, Protaetia brevitarsis seulensis

  • Kim, Sihyeon;Kim, Jong Cheol;Lee, Se Jin;Lee, Mi Rong;Park, So Eun;Li, Dongwei;Baek, Sehyeon;Shin, Tae Young;Gasmi, Laila;Kim, Jae Su
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.139-147
    • /
    • 2020
  • Root-feeding Scarabaeidae, particularly white grubs are considered among the most harmful coleopteran insect pests in turfgrass. In this work, sixteen entomopathogenic fungal species were assayed against flower chafer beetle, Protaetia brevitarsis (Coleoptera: Scarabaeidae) and Metarhizium anisopliae JEF-314 showed high virulence. The control ability of the isolate JEF-314 has been in detail tested for a model insect flower chafer beetle. Further analyses showed insect stage-dependent virulence where the fungal virulence was the highest against smaller instar larvae. Additionally, we confirmed that millet-based solid cultured granule was effective against the soil-dwelling larval stage. The isolate also showed a similar ability for a representative pest (Popillia spp.) in laboratory conditions. Our results clearly suggest a high potential of M. anisopliae JEF-314 to control the flower chafer beetle, possibly resulting in controlling of root-feeding white grubs in turfgrass. Based on the insect life cycle and susceptibility to the fungus, late spring and summer time would be the optimum time to apply JEF-314 granules for an effective control. Further characterization of the efficacy of the fungus under field conditions against the Scarabaeidae beetles might provide an efficient tool to control this beetle in an environment-friendly way.

Mosquito Control Using Entomopathogenic Fungi (곤충병원성 곰팡이를 이용한 모기 방제)

  • Choi, Kwang Shik;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.43 no.2
    • /
    • pp.77-87
    • /
    • 2015
  • Insects are commonly infected by fungal diseases and are mostly susceptible to them. Increasing levels of insecticide resistance has recently become an issue for control programs; thus, research has focused on mosquito control using entomopathogenic fungi, including fungal pathogens such as Beauveria bassiana, Metarhizium anisopliae, and Lagenidium giganteum. Review discusses entomopathogenic fungi related to control programs for mosquito transmitted vector-borne diseases such as dengue, filariasis, malaria, and yellow fever, and how to use entomopathogenic fungi for mosquito control.

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • Seo, Eun-Yeong;Son, Gwang-Hui;Sin, Dong-Ha;Kim, Gi-Deok;Park, Du-Sang;Park, Ho-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.469-472
    • /
    • 2002
  • Solid state fermentation was performed for the production of entomopathogenic fungus Metarhizium anisopliae HY-2 using wheat bran media containing rice bran. Fungal growth in a solid state fermentation system was estimated by viable cell count, spore count, and mycelial biomass. It was used chemical method measuring N-acetyl-glucosamine (chitin) content for estimating of mycelial biomass. In static flask culture, viable cell reached 2.40 ${\times}$ $10^8$ cfu/g at 23 days of culture at $27^{\circ}C$ and then mycelial biomass was 41.59 mg/g. Specific growth rate(${\mu}$ max) was 0.0418 $h^{-1}$ between 3 and 9 days when estimated by viable cell count and was 0.00976 $h^{-1}$ between 9 and 17 days when N-acetylglucosamine content was measured. Viable cells reached 1.12 ${\times}$ $10^8$ cfu/g in polypropylene-bag at 28 days of culture at $27^{\circ}C$. Formulated microbial pesticide containing M. anisopliae HY-2 were tested their bio-activity against Chestnut Brown Chafer (Adoretus tenuimaculatus). The protection rate of the liquid culture showed 13 ${\sim}$ 26 % with 1st to 3rd instar, and spore suspension of M. anisopliae HY-2 showed 56 ${\sim}$ 64%. Conidia produced by large scale solid-state fermentation showed 20 ${\sim}$ 27 % activity 60 ${\sim}$ 64 % with M. anisopliae HY-2.

  • PDF

Isolation and Characterization of Benomyl-Resistant Mutants in an Entomopathogenic Fungus, Metarhizium anisopliae

  • Kim Soon Kee;Shim Hee Jin;Roh Jong Yul;Jin Byung Rae;Boo Kyung Saeng;Je Yeon Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.119-123
    • /
    • 2005
  • Benomyl-resistant mutants of entomopathogenic fungus, Metarhizium anisopliae were isolated and their physiological characteristics were investigated. These militants were obtained spontaneously or by UV irradiation in benomyl-treated media. Four spontaneous (S-2, S-11, S-18, S-19) and four UV-induced (UV-4, UV-5, UV-19, UV-24) mutants, which grow stably and normally were selected. No significant differences in conidia or hyphal shape, conidia viability, mycelial biomass, or virulent to the diamondback moth were observed between the wild type and their mutants. But differently from the mycelial growth of other benomyl-resistant mutants which was slower than that of the wild type on a modified Czapek-Dox, SDAY, $4\%$ chitin, or $1\%$ skim milk medium, that in the spontaneous mutants, S-18 and S-19, did not show any difference from the wild type. Especially, S-18 and S-19 grew well at benomyl concentrations up to 50 times or higher than that which inhibits wild type proliferation. These results suggested that S-18 and S-19 could potentially be used with the fungicide, benomyl.

Selection of Optimal Culture Medium for Four Entomopathogenic Fungal Isolates with Dual Activity and Evaluation of Their Antimicrobial Activity against Several Phytopathogens (이중 활성 곤충병원성 곰팡이 4균주에 대한 최적 배양 배지 선발 및 다양한 항균활성 평가)

  • Yun, Hwi-Geon;Gwak, Won-Seok;Woo, Soo-Dong
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.333-344
    • /
    • 2018
  • Selection of the optimal culture medium and evaluation of the antimicrobial activity against various phytopathogens were performed for four entomopathogenic fungal isolates with excellent insecticidal and antimicrobial activity against the two-spotted spider mite (Tetranychus urticae), green peach aphid (Myzus persicae), and gray mold (Botrytis cinerea). The optimal medium was selected by measuring the amount of blastospore production and the antifungal activity of the culture medium. On the basis of these experiments, GY medium was selected for Beauveria bassiana 2R-3-3-1 and Metarhizium anisopliae 4-2, SD3, and PDB medium for B. bassiana SD15. The antimicrobial activity test against other phytopathogens indicated that all four isolates showed high antifungal activities against Colletotrichum acutatum and Sclerotinia sclerotiorum. However, for Phytophthora capsici and C. fructicola, only M. anisopliae SD3 showed a high antifungal activity against P. capsici, and the other three isolates had little activity. Antibacterial activity against Clavibacter michiganensis subsp. michiganensis was high in two isolates of M. anisopliae but not in two isolates of B. bassiana. Thus, it was confirmed that entomopathogenic fungi effective for pest control could be effectively used as a control agent for various plant diseases.

Correlation between pr1 and pr2 Gene Content and Virulence in Metarhizium anisopliae Strains

  • Rosas-Garcia, Ninfa M.;Avalos-de-Leon, Osvaldo;Villegas-Mendoza, Jesus M.;Mireles-Martinez, Maribel;Barboza-Corona, J.E.;Castaneda-Ramirez, J.C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1495-1502
    • /
    • 2014
  • Metarhizium anisopliae is a widely studied model to understand the virulence factors that participate in pathogenicity. Proteases such as subtilisin-like enzymes (Pr1) and trypsin-like enzymes (Pr2) are considered important factors for insect cuticle degradation. In four M. anisopliae strains (798, 6342, 6345, and 6347), the presence of pr1 and pr2 genes, as well as the enzymatic activity of these genes, was correlated with their virulence against two different insect pests. The 11 pr1 genes (A, B, C, D, E, F, G, H, I, J, and K) and pr2 gene were found in all strains. The activity of individual Pr1 and Pr2 proteases exhibited variation in time (24, 48, 72, and 96 h) and in the presence or absence of chitin as the inductor. The highest Pr1 enzymatic activity was shown by strain 798 at 48 h with chitin. The highest Pr2 enzymatic activity was exhibited by the 6342 and 6347 strains, both grown with chitin at 24 and 48 h, respectively. Highest mortality on S. exigua was caused by strain 6342 at 48 h, and strains 6342, 6345, and 6347 caused the highest mortality 7 days later. Mortality on Prosapia reached 30% without variation. The presence of subtilisin and trypsin genes and the activity of these proteases in M. anisopliae strains cannot be associated with the virulence against the two insect pests. Probably, subtilisin and trypsin enzyme production is not a vital factor for pathogenicity, but its contribution is important to the pathogenicity process.

The Biosynthesis Pathway of Swainsonine, a New Anticancer Drug from Three Endophytic Fungi

  • Ren, Zhenhui;Song, Runjie;Wang, Shuai;Quan, Haiyun;Yang, Lin;Sun, Lu;Zhao, Baoyu;Lu, Hao
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1897-1906
    • /
    • 2017
  • Swainsonine (SW) is the principal toxic ingredient of locoweed plants that causes locoism characterized by a disorder of the nervous system. It has also received widespread attention in the medical field for its beneficial anticancer and antitumor activities. Endophytic fungi, Alternaria sect. Undifilum oxytropis isolated from locoweeds, the plant pathogen Slafractonia leguminicola, and the insect pathogen Metarhizium anisopliae, produce swainsonine. Acquired SW by biofermentation has a certain foreground and research value. This paper mainly summarizes the local and foreign literature published thus far on the swainsonine biosynthesis pathway, and speculates on the possible regulatory enzymes involved in the synthesis pathway within these three fungi in order to provide a new reference for research on swainsonine biosynthesis by endophytic fungi.

Turfgrass Insect Pests and Natural Enemies in Golf Courses (골프장 잔디 해충과 천적의 종류)

  • 추호렬;이동운;이상명;이태우;최우근;정영기;성영탁
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.171-179
    • /
    • 2000
  • - Turfgrass insect pests and natura.l enemies for biological control were investigated to develop pest management effectively in golf courses at several golf clubs. Twenty eight insect pest species of 10 families in 6 orders were collected from golf courses. The zoysiagrass mite, Eriophyes zoysiae and root-knot nematode, Meloidogyne incognita were also collected from zoysiagrass. White grubs of several scarab beetles and cutworms (Agrotis spp.) damaged seriously at most surveyed golf clubs. In addition, bluegrass webworm (Crambus sp.), Japanese lawngrass cutworm (Spodoptera depravata), scale insects, Tipula sp., and ants (Camponitus japonicus, Formica japonica, and Lasins japonicus) damaged turfgrasses directly or indirectly in golf courses. The entomopathogenic nematodes, Heterorhabditis spp., Steinernema glaseri, and S. longicaudum, entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, and milky disease, Paenibacil/us popil/iae were isolated from white grubs or turfgrass soil as microbial control agents. Besides, dipteran predators, Cophinopoda chinensis, Philonicus albiceps, and Promachus yesonicus and hymenopteran parasitoid, Tiphia sp. were also collected. The P. yesonicus was the most active in golf courses. The root-knot nematode, M. incognita was found from Zoysia japonica, Z. matrella. and Cynodon dactylon.

  • PDF