• 제목/요약/키워드: Metalworking Fluid

검색결과 21건 처리시간 0.032초

금속가공유 시료에서 Optical Density 설정조건에 따른 엔도톡신의 정량 (Analysis on Endotoxin Using Analytical Conditions of Optical Density in Metalworking Fluid Sample)

  • 박동욱;윤충식;박두용;한인영
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2002년도 춘계 국제 학술대회
    • /
    • pp.44-46
    • /
    • 2002
  • This study was conducted to identify the proper analytical conditions regarding optical density for endotoxin analysis in the workplace using metalworking fludis. Our study found the "onset method" was more accurate than "time to Vmax" Reproducibility and accuracy analyzed by "onset method" was more greater than those by "time to Vmax""0.03"of optical density was the most appropriate analytical condition among onset method. Through this analytical condition, 0.998 of linearity was obtained and recovery rate ranged from 88% to 105% at endotoxin concentration below 5 EU/$m\ell$. No significant difference of endotoxins between "0.03"and "0.05" of optical density was observed from this study. Furthermore, correlation coefficients between them were statistically significant(p<0.01). This study concluded that 0.03”or "0.05" of optical density is used to analyze endotoxin. Of these optical density value, value with higher linearity should be used to analyze endotoxin in environmental samples.

  • PDF

미생물 성장을 억제하기 위하여 수용성 절삭유에 과다하게 첨가한 붕소와 아민 사례 연구 (Ethanolamine and boron abuse to limit microbial growth in water-synthetic metalworking fluids)

  • 박동욱;백도현
    • 한국산업보건학회지
    • /
    • 제15권3호
    • /
    • pp.270-276
    • /
    • 2005
  • This study was conducted to examine whether a specific synthetic metalworking fluid (MWF), "A", in use for 10 months without replacement, displayed microbial resistance and to identify the additives associated with the control of microbial growth. Three synthetic MWF products ("A", "B", and "C") were studied every week for two months. Microbial deterioration of the fluids was assessed through evaluation by endotoxin, bacteria and fungi levels in the MWFs. In addition, formaldehyde, boron, ethanolamine, and copper levels were also studied to determine whether they influence microbial growth in water-based MWFs. Throughout the entire study in the sump where MWF "A" was used, bacteria counts were lower than 103 CFU/mL, and endotoxins never exceeded 103 EU/mL. These levels were significantly lower than levels observed in sumps badly deteriorated with microbes. Boron levels in MWF "A" ranged from 91.7 to 129.6 ppm, which was significantly higher than boron levels found in other MWF products. The total level of ethanolamine (EA) in MWF "A" ranged from 35,595 to 57,857 ppm (average 40,903 ppm), which was over ten times higher than that found in other MWFs. Monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) concentrations in MWF "A" were also significantly higher than seen in other MWFs. However, although EA and boron might improve anti-microbial performance, their abuse can pose a serious risk to workers who handle MWFs. From an industrial hygiene perspective, our study results stress that the positive synergistic effect of boron and EA in reducing microbial activity in MWF must be balanced with the potentially negative health effects of such additives. Our study also addresses the disadvantage of failing to comprehensively report MWF additives on Material Safety Data Sheets (MSDS). Future research in MWF formulation is needed to find the best level of EA and boron for achieving optimal synergistic anti-microbial effects while minimizing employee health hazards.

절삭유 공급 방식의 신뢰성 평가 기술 (Reliability Evaluation Technology of Metal Working Fluids Supply Method)

  • 강재훈;송준엽;이승우;박화영;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.206-208
    • /
    • 2002
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool , carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, Protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the result ins level of exposure) depends on many factors. To reduce the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum Quantity in all over the mechanical machining field including high speed type heavy cult ing process.

  • PDF

건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구 (A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air)

  • 강재훈;송준엽;박종권;노승국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

Exposure Assessment to Suggest the Cause of Sinusitis Developed in Grinding Operations Utilizing Soluble Metalworking Fluids

  • Park, Dong-Uk;Choi, Byung-Soon;Kim, Shin-Bum;Kwag, Hyun-Seok
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.326-329
    • /
    • 2005
  • A worker who grinded the inner parts of camshafts for automobile engines using water-soluble metalworking fluid (MWF) for 14 years was diagnosed with sinusitis. We postulated that the outbreak of sinusitis could be associated with exposure to microbes contaminated in water-soluble MWF during the grinding operation. To suggest responsible agents for this outbreak, quantitative exposure assessment for chemical and biological agents and prevalence of work-related respiratory symptoms by questionnaire were studied. The exposure ranges of MWF mist (0.59 $mg/m^3$to 2.12 $mg/m^3$) measured during grinding exceeded 0.5 $mg/m^3$ of the recommended exposure limit (REL). Grinder's exposures to bacteria, fungi and endotoxins were also generally higher than not only the proposed standards, but also those reported by several studies to identify the cause of respiratory effects. Statistical test indicated that the prevalence rate of reported symptoms related to nasal cavities showed no significant differences among the operations. Evaluation on grinding operation characteristics and quantitative exposure assessment indicated that repeated exposure to MWF mist including microbes contaminated from the use of water-soluble MWF may cause respiratory diseases like sinusitis or at least increase susceptibility to the development of sinusitis

  • PDF

Analysis on Chemical Ingredients with Anti-microbial Activity in Water-based Metalworking Fluids

  • Park, Dong-Uk;Lee, Jong-Hang;Yoon, Chung-Sik;Lee, Kwon-Sup;Park, Deok-Mook
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.213-216
    • /
    • 2003
  • This study was conducted to estimate if the level of several chemical ingredients including alkanolamines or ethanolamines (EA) examined in the specific synthetic metalworking fluid (MWF) “A” can cause anti-microbial activity and health effect. Three water-based MWF products (“A”, “B”, and “C”) were studied every week for two months (from June 1, 2002 to July 30, 2002). Chemical ingredients such as formaldehyde, boron, EA, and copper were examined. In the sump where MWF “A” was used, not only the total level of EA, monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA), but also boron level were significantly higher than those of the other MWFs. ANOVA statistical tests indicated that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF A were significantly higher than those in other MWF types. Correlation tests also found that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF “A” are significantly correlated. We suggested the assumptions that excessive concentrations of EA, and borate at a high pH level, may cause anti-microbial resistance synergically, To demonstrate this assumption, additional study is needed to examine the relationship between the levels of microbes and excessive concentrations of EA, and borate at a high pH level.

  • PDF

절삭가공(切削加工)에 사용(使用)되는 절삭유(切削油)의 농도최적화(濃度最適化)에 관(關)한 연구(硏究) (A Study on Optimization of The Concentration of Cutting Oil to be used for Cutting)

  • 김규태;김원일
    • 한국산업융합학회 논문집
    • /
    • 제16권3호
    • /
    • pp.95-102
    • /
    • 2013
  • It is indispensable to modern society metal processing since the industrialized rapidly, but it is a metalworking cutting fluid immediately. In addition, this means selecting a emulsion on the basis of quality criteria processing method, the material of the material, cutting depth, cutting speed, Djourou fence Liang, and surface roughness, cutting oil, the shape of the device based on the emulsion, I will be the structure of the tank, filtration equipment also changes. In particular, acting bacteria is now breeding in response to the passage of time due to metal ion degradation due to heat generated hydraulic fluid leakage, humidity tung, during processing, seep from processing material at the time of processing the water-soluble cutting oil for generating the malodor by dropping significantly the performance of the cutting oil to corruption from, sometimes by introducing various additives to suppress spoilage in advance. In this study, we expect the effect of the cost reduction in the extension of fluid replacement cycle through the application of the management apparatus and deep understanding in the management of cutting fluid, the working environment through the understanding and interest of workers in the production site more than anything I try to become useful for the improvement.

금속가공유 시료에서 일부 Optical Density 설정값에 따른 엔도톡신의 정량 (Analysis of Endotoxin Using Analytical Conditions of Optical Density in Metalworking Fluid Sample)

  • 박동욱;한인영;윤충식;박두용
    • 분석과학
    • /
    • 제15권5호
    • /
    • pp.459-465
    • /
    • 2002
  • 본 연구에서는 금속가공유 (metalworking fluids, MWF)를 취급하는 사업장에서 채취한 벌크시료와 공기중 시료를 대상으로 엔도톡신 (endotoxin)의 정확한 분석을 위한 Optical Density (OD)의 설정조건을 검토하였다. OD값을 설정하는 Onset time방법이 "time to $V_{max}$"방법보다 재현성, 정확성이 높았다. 구체적인 OD설정값은 "0.03"이 가장 적정한 것으로 나타났다. 검량선의 상관계수 (직선성)가 0.998로서 가장 높았고 회수율도 88% - 105% (0.05 EU/mL과 5 EU/mL 범위)로서 다른 OD값 (OD "0.05", OD "0.1", "time to $V_{max}$")보다도 적정하였다. Onset time방법에서 설정해야 할 OD값은 "0.03"과 "0.05"이 적정한 것으로 나타났다. OD "0.03"과 "0.05"에 의한 엔도톡신 분석결과간의 상관계수 ($\gamma$)는 MWF시료에서는 0.97 그리고 공기 중 시료에서는 0.99로 유의하게 나타났다. 따라서 금속가공유를 대상으로 엔도톡신을 분석할 때는 Onset time 방법을 선택하고 구체적인 OD설정 값은 "0.03"과 "0.05"중에서 검량선의 상관성 (linearity)이 0.98 이상을 나타내는 OD값으로 분석하는 것이 적정한 것으로 판단된다.

절삭유 공급 방식의 최적화를 위한 실험적 연구 (An Experimental Study on the Proper Supply Method of Metal Cutting Coolant)

  • 강재훈;송준엽;최종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.977-980
    • /
    • 2004
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool, carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the resulting level of exposure) depends on many factors. To reduce the environmental pollution wastes and the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum quantity in all over the mechanical machining field including high-speed type heavy cutting process.

  • PDF

항공기용 연료호스 제작시 최적 크림핑 직경에 관한 연구 (A Study on the Optimal Crimping Diameter of Aircraft Fuel Hoses in Manufacturing Process)

  • 전준영;김병탁
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.84-90
    • /
    • 2014
  • The high pressure hoses are widely used for the vehicles, aircraft, and overall industries. The hose assembly is generally composed of a nipple, a socket and a hose with reinforcement layers to increase the tensile strength. To produce the hose assembly, crimping or swaging process is usually used to clamp its components to ensure the prevention of fluid leakage. Crimping is a cold-working technique to form a strong bond between the workpiece and a non-metallic component. The crimping stroke is a primary parameter to be determined in the metalworking process, and it plays an important role in hose performance. This study aims at investigating the optimal crimping stroke according to the size of aircraft high pressure hose by using MSC/MARC. It is supposed that the results can be useful to get the information about the crimping stroke in manufacturing process, even with the different size of a hose.