• Title/Summary/Keyword: Metals' ratio

Search Result 658, Processing Time 0.029 seconds

Plant Leave as an Indicator for Pollution by Hydrocarbons and Heavy Metals in Al-Zubair City, Southern Iraq

  • Sajjad W. Jaafar;Sattar J.Al. Khafaji
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • The potential sources and spatial distribution of heavy metals and polycyclic aromatic hydrocarbons (PAHs) were investigated in the leaf plants of Al-Zubair city. A total of 14 samples of conocarpus lancifolius plant leaf were collected and analyzed for their heavy metals and PAHs content using inductively coupled plasma mass spectrometry (ICP-MS) and a 7890 Agilent capillary gas chromatograph (GC) respectively. Bioaccumulation factor calculation revealed the highest pollution of heavy metals , due to the activity of a petrochemical in the area. The diagnostic ratio of Ant/(Phe+Ant), BaA/BaA+Chr), In/(In+BghiP), Flu/Pyr, FlA/FlA+Pyr), FlA/FlA+Pyr), ∑LMW/∑HMW are commonly used for determining the origin and source of PAHs in various environmental media. The diagnostic ratio indicated the anthropogenic origin. PAHs with five-to-six membered rings were dominant in the plant leaf, which likely results from anthropogenic activities. The leaves of C. lancifolius have a preponderance of high molecular weight PAHs compared to low molecular weight PAHs, indicating a combustion origin (car exhaust, petroleum emissions, and fossil fuel). C. lancifolius leaves are a reliable indication of atmospheric PAHs absorption. The background level of heavy metals in the city (or the near environment) is in the order of Fe > Cu > Ni > Cr. On the other hand, the bioaccumulation in plant leaves showed greater tendencies as follows: Co>Cd>Zn=As>Cu>Mn>Ni>Pb>Cr>Fe. Cobalt showed high bioaccumulation, indicating strong uptake of Co by plant leaves. These findings point to human activity and car emissions as the primary sources of roadside vegetation pollution in Al-Zubair city.

Prediction of the Macroscopic Plastic Strain Ratio in AA1100 Sheets Manufactured by Differential Speed Rolling (이속압연에 의해 제조된 AA1100 판재의 소성변형비 예측)

  • Choi, Jae-Kwon;Cho, Jae-Hyung;Kim, Hyoung-Wook;Kang, Seok-Bong;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.605-614
    • /
    • 2010
  • Conventional rolling (symmetric) and differential speed rolling (DSR) were both applied to AA1050 sheets at various velocity ratios, from 1 to 2 between the top and bottom rolls. An electron backscatter diffraction (EBSD) technique was used to measure texture inhomogeneity through the thickness direction. After the annealing process, the annealing texture of the DSR processed sheets was different from that of conventionally rolled sheets. The velocity ratio between the top and bottom rolls affected the texture inhomogeneity and macroscopic plastic strain ratio of the AA1050 sheets. A prediction for the macroscopic plastic strain ratio of AA1050 sheets was carried out using a visco-plastic self-consistent (VPSC) polycrystal model. The strain ratio directionality that was predicted using the VPSC polycrystal model was in good agreement with experimental results.

The Relationship of Dietary Heavy Metal Intake with Serum Trace Elements in College Women Living in Choong-Nam Area

  • Kim, Ae-Jung
    • Nutritional Sciences
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 1999
  • The purpose of this study was to study the intake of heavy metals such af arsenic, lead and cobalt and the relationship of dietary heavy metals with serum iron, topper, and zinc, which play important roles in hematopoiesis, in healthy college women living in Choongnam Korea, where we have detected heavy metals (As, Pb, Co) in some marine products in previous studies. The nutritional status of the subjects (35 women) was evaluated by anthropometric measurements, 24-hr dietary recall for 3 days. And 3-day diets (by weighing method) and blood were collected to analyze As, Pb, Co, Fe, Cu, Zn, Hb, Hct, and MCHC. The mean age, height, weight, and BMI were 20 years, 158 cm, 55 kg and 22.42 kg/$m^2$, respectively. The mean daily energy intake was 85.85% of RDA for Koreans. The ratio of energy from carbohydrate, protein, and fat was 60 : 24 : 16. The mean daily intake of heavy metals (As, Pb, Co) was 1.77 mg/day, 75.21 $\mu$g/day and 21.12 $\mu$g/day. And the mean daily intake of iron, copper, and Zinc concentrations were 97, 68, and 92% of normal values. The mean serum heavy metals (As, Pb, Co) were 16.14 $\mu$g/dl, 4.32 $\mu\textrm{g}$/dl and 0.02 $\mu$g/dr, respectively Mean blood levels of Fe, Cu, Zn, Hb, Hct, and MCHC were at normal levels. Dietary heavy metals except Co were not significantly different from serum Fe, Cu, Zn and Hb, Hct, and MCHC. However, there was a tendency toward lower serum concentration of Fe, Hb, Hct, and MCHC in the subjects with higher heavy metals (As) intake. Among heavy metals, only dietary Co showed a significant negative correlation with Hb (p< 0.001) and Hct (p < 0.001).

  • PDF

Removal of Heavy Metals from Acid Mine Drainage using AFMR Process (AFMR 공정을 이용한 광산폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Gwangbok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.313-321
    • /
    • 2000
  • This research is to remove heavy metals from AMD(Acid Mine Drainage) using AFMR(Anaerobic Floating Media Reactor) process. Two AFMR were operated at HRT(hydraulic retention time) of 3 days. COD/sulfate ratio from 0.3 to 0.8, temperature from $30^{\circ}C$ to $35^{\circ}C$, and alkalinity of 1.000mg/l(as $CaCO_3$). At COD/sulfate($SO{_4}^{2-}$) ratio of 0.5 and temperature of $35^{\circ}C$, the ratio of reduced sulfate($SO{_4}^{2-}$)/removed COD(mg/mg) kept about 1 and the reactor achieved 99.99% of Cr, Pb anee Fe, 98% of Cd, and 90% of Mn removal efficiencies, respectively. Decreasing temperature to $30^{\circ}C$ increased the ratio of reduced sulfate($SO{_4}^{2-}$)/removed COD(mg/mg) to 1.37. Amount of sulfate reduction maximized at the temperature of $30^{\circ}C$ and the COD/sulfate ratio of 0.4 in the influent and then removal efficiencies of heavy metals were 99.99% of Fe, 99.99% of Pb, 99,99% of Cr, 97.3% of Mn, 99.9% of Zn, 99.9% of Cd and 99.9% of Cu.

  • PDF

Variation of Heavy Metal Accumulation and Inorganic Matter of Rumex crispus Community from Kumho Riverside (금호강 하류 소리쟁이군락의 무기물 및 중금속 축적의 변이)

  • 박태규;박용목;송승달
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.139-144
    • /
    • 1999
  • In order to clarify ecological survival strategy of Rumex crispus community dominating under contaminated area of lower region of Kumho riverside including Chimsangyo (CS), Paldalgyo (PD), Talseochon (TS) and Kumhogyo (KH), we analyzed the content of heavy metals and inorganic matter and vegetative growth. R. crispus showed rapid formation of community by high growth rate, high T/R ratio and showed maximum T/R ratio at the contaminated area Talseochon. Nitrogen and phosphorus contents in R. crispus showed high value in shoot than that of root. T/R ratio of nitrogen and phosphorus showed 3.1∼3.6 and 1.5∼4.5 for the early growth stage, and 6.7∼17.3 and 3.9∼8.3 for the late one, respectively. The absorbed heavy metals by riot were translocated to shoot, the heavy metal content in shoot higher than those in root of Cu, Zn, Fe, and Pb for 3.6, 1.7, 1.5 and 4.8 times, respectively. Distribution ratio of the heavy metals in each organ showed 61∼85% and 15∼39% for shoot and root, respectively. R. crispus accumulated heavy metals in the order of Fe>Zn>Cu>Pb in shoot, and showed maximum values of Cu, Zn, Fe and Pb for 89.7, 376.6, 2946.1 and 13.2 ㎍/g dw, respectively at Talseochon in April. A physiological and morphological characteristics of R. crispus showed thickened leaf, increased water content above 80% and rapid growth of shoot. R. crispus showed ecological adaptation to the contaminated area by transportation of heavy metals and inorganic matter to shoot, and by accumulation of Ca ion in root.

  • PDF

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

Recovery of Nitric Acid and Valuable Metals from Spent Nitric Etching Solutions of Printed Circuit Board

  • Ahn, Jae-Woo;Ahn, Jong-Gwan;Lee, Man-Seung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.140-143
    • /
    • 2001
  • A study has been made on the recovery of nitric acid and valuable metals such as Cu, Sn, Pb from the spent nitric etching solutions. The nitric acid was extracted effectively by TBP but the heavy metals such as Fe, Cu, Sn, Pb were not extracted by TBP from the spent nitric etching solutions. From the experimental results, 95% of nitric acid in spent etching solution was extracted at O:A ratio of 3:1 with five stage by 60% TBP and 98% of nitric acid was stripped from the loaded organic phase at O:A ratio of 1:1 with four stages by distilled water. After extracting nitric acid, Cu was recovered as a metal by electrowinning effectively and Sn was successfully removed by precipitation method by adjusting the pH of raffinate solution. Finally, Pb was recovered by cementation with iron scrap at $65^{\circ}C$. Parameters controlling the cementation process, such as temperature, pH and the effect of the additives were investigated.

  • PDF

Equilibrium Sorption of Heavy Metals (Pb, Cu. Zn, Cd) onto Scoria

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.302-305
    • /
    • 2002
  • Scoria is a bomb-sized, generally vesicular pyroclast that is red or black in color and light in weight. In this study, scoria from Cheju was examined for the use as a sorbent. It is composed of plagioclase, olivine, hornblende, pyroxene, and glass, with an average composition of 49.84% SiO$_2$, 14.07% A1$_2$O$_3$, End 9.14% Fe$_2$O$_3$. Studies on kinetic isotherm sorption of Zn(II) onto scoria under various parameters such as initial zinc concentration, particle size, and adsorbent/adsorbate ratio were carried out using an agitated batch. The results suggest that the smaller scoria size and the larger adsorbent/adsorbate ratio produce the higher degree of Zn(II) removal. More effective removal also appears at lower initial Zn concentration. The sorption behavior of Zn(II) onto scoria seems to be mainly controlled by cation exchange. Studies on equilibrium isotherm sorption of other heavy metals (Pb, Cu, Cd) onto scoria were also conducted and compared with those onto powdered activated carbon (PAC) and non-organic matter scoria (NOS), The results suggest that the Cheju scoria has the slightly higher sorption capability than PAC and NOS, and the order of the effective sorption onto scoria and PAC is Pb > Cu > Zn > Cd. The monometal sorption onto scoria is more stronger than the competitive sorption.

  • PDF

Volatilization and Toxicity Control of Heavy Metal Chlorides under Combustion Conditions (연소조건에서 중금속 염화물의 휘발 및 유독성 제어)

  • 서용칠
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.175-182
    • /
    • 1993
  • Volatilization of toxic heavy metals, especially, metal chlorides at elevated temperatures in oxidation conditions was observed using a thermogravimetric furnace since such metal chlorides used to be a cause for the disease of industrial workers by their toxicity and high volatile extent. Most of tested metal chloride compounds were evaporated or decomposed into gas phase at elevated temperatures ranged from 200~90$0^{\circ}C$, while CrCl$_3$ and NiC1$_2$became stable with converting into oxide forms. A kinetic model for evaporation/condensation could predict maximum evaporation flux and the calculated values were compared with real evaporation flux. The ratio of two fluxes could be explained as the fraction of impinging gas molecules to the condensing surface( $\alpha$ ) and obtained in the range of 10$^{-3}$ ~10$^{-9}$ for the experimented toxic heavy metal chlorides. This ratio might be used to define the volatile extent or toxicity of such toxic metal compounds. The schemes to avoid volatilization of toxic heavy metals Into the atmosphere were suggested as follows ; 1 ) controlling the compositions of metals and Chlorine produced substances( such as PVC ) in the treated materials using a reverse estimation from regulatory limit and characteristics of a processing facility, 2) Installation of wet type devices such as a scrubber for condensing the metal compounds.

  • PDF

Composition Analysis and Thermodynamic Care for Replication of Ancient Metallic Type (고대 금속활자의 복제를 위한 성분분석과 열역학적 주의 점)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • 'Jikjisimcheyocheal (Jikji afterwards)' is known as a first book printed by the metal type in the world. The metal type used for printing this book has not been found yet. To help for replicating the original metal type, it is required to investigate the composition analysis of the copied metal type. In this study, the composition analysis and thermodynamic care for replicating of ancient metal type was performed on the basis of an analytical reports concerned with the ancient metal type which made after Jikji printing. Metal types were made by remelting and casting of the mother alloy which came from a cast of a mixed metals in accordance with the composition revealed in the literatures. Change of composition during remelting of mother alloy and casting of metal was detected by the EDS analysis. The reasons for variation in composition were discussed by metallurgical and thermodynamic point of view, and a mixing ratio of metals to get the original composition of ancient metal type is suggested. Some attention should be paid on mixing, melting and casting of metals to get an objected composition for copy of ancient metal type.