• Title/Summary/Keyword: Metalorganic chemical vapor deposition

Search Result 134, Processing Time 0.021 seconds

Catchodoluminescence Study of GaN Films Grown by Low-Pressure Metalorganic Chemical Vapor Deposition (저압 유기 금속 화학 증착법으로 성장시킨 GaN박막의 캐소드루미네슨스에 대한 연구)

  • 홍창희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.63-68
    • /
    • 1999
  • In this paper, the correlation between the growth mechanism and the optical property in GaN films grown by low-pressure metalorganic chemical vapor deposition was characterized using room temperature cathodoluminescence spectroscopy. An intense near band-edge emission, 364nm, and deep-level emission, 550nm, were observed. The intensity of 364nm peak was increased with increasing the beam current. Also the peak position of 364nm emission was red-shifted and the intensity of 550nm peak was increased with increasing the accelerating voltage. It shows that the deep-level emission is strongly associated with crystalline defects in the GaN at early stage. The relationship between the microstructure and the deep level emission observed by scanning electron microscope images and cathodoluminescence spectra was carefully analyzed.

  • PDF

Temperature Dependence of Excitonic Transitions in GaN Grown by MOCVD

  • Guangde Chen;Jingyu Lin;Hongxing Jiang;Kim, Jung-Hwan;Park, Sung-Eul
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • The Photoluminescence (PL) measurement results of a very good quality GaN sample grown by metalorganic chemical vapor deposition (MOCVD) are reported. The temperature dependences of peak position, emission intensity, and the full width at half maximum (FWHM) of free-exciton (FX) A and B are presented. Our results show the fast thermal quenching of FX transition intensities and predominantly acoustic phonon scattering of emission line broadening. The transition-energy-shift following the Varshni's empirical equation, and by using it to fit the data, E$\_$A1/(T) = 3.4861 eV -6.046 $\times$ 10$\^$-4/T$^2$ (620.3+ T) eV, E$\_$B1/(T) = 3.4928 eV -4.777 $\times$ 10$\^$-4/T$^2$ / (408.2+ T) eV and E$\_$A2/ = 3.4991 eV -4.426 $\times$ 10$\^$-4/ T$^2$ / (430.6+ T) eV for A(n=1), B(n=1), and A(n=2) are obtained respectively.

  • PDF

A Study on Misfit Dislocation Generation in InAs Epilayers Grown on InP Substrates by Metalorganic Chemical-Vapor Deposition (MOCVD방법으로 InP 기판 위에 성장시킨 InAs 박막에서의 부정합 전위 생성 연구)

  • Kim, Jwa-Yeon;Yun, Eui-Jung;Park, Kyeong-Soon
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.483-488
    • /
    • 1997
  • A misfit dislocation generation in InAs epilayers grown on (001) InP substrates (oriented $2^{\circ}$ off (001) toward the [110] direction) using metalorganic chemical-vapor deposition was studied. The InAs film of 17 nm thickness grown at $405^{\circ}C$ showed the three different arrays of dislocations: a straight orthogonal array to the <110> direction, an array to the >100> direction, and an array tilted by a degree of $5\sim45^{\circ}$ from the [110] direction. All of the dislocations had a/2<101> Burgers vectors inclined $45^{\circ}$ to the interface. Upon annealing at $660^{\circ}C$ the InAs films with 60, 140 and 220 nm thicknesses, most of the misfit dislocations became the Lomer type $(\sim100%)$ oriented exactly along the >110> direction. These misfit dislocation spacings were decreased with increasing the InAs thickness up to 220 nm thickness. This phenomena was interpreted by the relationship between the dislocation interaction energy among parallel misfit dislocations and the opposite remnant InAs epilayer strain energy. The distance between misfit dislocations was measured by transmission electron microscopy.

  • PDF

Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition (유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동)

  • Jung, Woo-Gwang;Jang, Jae-Min;Choi, Seung-Kyu;Kim, Jin-Yeol
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.535-541
    • /
    • 2008
  • Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with $1{\sim}2nm$ height and $40{\sim}50nm$ diameter were formed by the S-K growth mode. Dome shape InGaN dots with $200{\sim}400nm$ diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).