• Title/Summary/Keyword: Metallographic degradation

Search Result 6, Processing Time 0.02 seconds

A Characteristics of the Multiple Repair Welding HAZs in a Low Alloy-Steel(2.25Cr-1.0Mo) (저 합금강재(2.25Cr-1.0Mo) 반복 보수용접 열영향부의 특성)

  • Lee, Chul-Ku;Ahn, Jong-Seok;Lee, Nam-Hyuck;Lee, Gil-Jae
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • A low alloy-steel(2.25Cr-1.0Mo) has been widely used for boiler piping, header and tubes in high temperature and pressure conditions of the thermal power plant. It is common knowledge that the repair welding is permitted two or three times by customary practice rule, but there is no regulation to limit the number of repair welding base on the study heat-affected zone(HAZ), which is the weakest zone when repair welding is under taken, by experiments about the metallographic degradation and mechanical properties. Therefore, this study aims to verify the reliability of 5 times repair welding through conducting the experimental observation in the mechanical and the metallographic change on HAZ varying repair welding times. In results of the experiments, it is concluded that the reliability was kept in HAZ even up to the fifth repairs.

Evaluation of the High Temperature Degradation of the Rotor of a 500 MW Tandem Steam Turbine (500 MW급 텐덤형 스팀 터빈 로터의 고온 열화평가)

  • Ku, Dae-Hwan;Yoo, Ho-Sun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • The metallographic examination and hardness measurements were conducted for the rotor of the 500 MW tandem steam turbine of Unit 4 in Dangjin Thermal Power Plants at the locations of steam inlet where the high temperature steams pass; high and intermediate pressure turbines. Creep cavity and degradation levels of optical micrographs of them are observed. The remaining life time of 201,523h for the rotor of the 500 MW tandem steam turbine of Unit 4 in Dangjin Thermal Power Plants was determined by the results of the inspection.

  • PDF

Nondestructive Evaluation of X20CrMoV12.1 Steel Weldment by Replica Method (Replica법에 의한 X20CrMoV12.1강 용접부의 비파괴 평가)

  • Kang Kae Myung;Choi Jong Un
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2004
  • In this study, the degree of creep damages on the weldment accelerated creep degradation was nondestructively evaluated by replica method. The frequency of creep cavities occurrence has been observed highly at the intercritical HAZ. The life fraction of weldment damaged by creep has shown from 0.25(damage grade: 2) to 0.75(damage grade: 4) when it reptured. The degree of creep damages is considered to be evaluated by the metallographic replica method which is one of nondestructive evaluation methods.

Study on the Establishment of Rail Grinding Criteria of High-Speed Railway Lines Considering the KTX Operation Circumstances (KTX 운행현황을 고려한 고속선 레일 연마 기준 정립에 대한 연구)

  • Kim, Man-Cheol;Kang, Tae-Ku
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.377-385
    • /
    • 2007
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were analyzed for metallographic structure and tested for the hardness. By analyzing the test results to the factors affecting the RCF causing the defects of rail surface, the study suggested the rail grinding criteria of the domestic high speed railway lines. As the factors affecting RCF, passing tonnage, running speed and track condition are considered.

  • PDF

HAZ TOUGHNESS AND MICROSTRUCTURE IN HIGH NITROGEN AUSTENITIC STAINLESS STEEL

  • Sato, Yoshihiro;Shiotsu, Tomoya;Nakagawa, Takafumi;Kikuchi, Yasushi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • HAZ(Heat Affected Zone of weldm ents) properties were investigated for a high nitrogen austenitic stainless steel with a chemical composition of Fe-0.02C-0.15Si-6.00Mn-10.0Ni-23.0Cr-2.00Mo-0.48N-0.14V. Thermal cycle of HAZ was simulated by the thermal cycle simulator (Gleeble 1500). The heat treatment was applied to the Charpy test size sample without notch under various peak temperatures and/or the holding times condition. V-notch Charpy test was performed at the temperature range of 273~77 K. Metallographic examination also was carried out by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The simulated specimens revealed a slight embrittlement compared with the base materials. The impact toughness of the specimens deteriorated with the decreasing test temperature. The results from Charpy V-notch test, however, showed that significant degradation of absorbed energy caused by brittle fracture was not observed for the specimen tested in the test temperature range.

  • PDF

Rail Grinding Criteria of Kyeong-Bu High-Speed Line for Effective Rail Maintenance (레일유지관리 효율화를 위한 경부 고속선 레일 연마 기준(안))

  • Kim, Man-Cheol;Kang, Tae-Ku
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.272-279
    • /
    • 2008
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were tested for metallographic structure and measured for the hardness. As the factors affecting RCF causing the defects of rail surface, passing tonnage, running speed and track condition are considered.