• Title/Summary/Keyword: Metallic plates

Search Result 117, Processing Time 0.032 seconds

Comparative Study of Metallic and Non-metallic Stiffened Plates in Marine Structures

  • Jeong, Han-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2010
  • In this paper, a comparative study of metallic and non-metallic stiffened plates under a lateral pressure load is performed using conventional statistically determinate and SQP(Sequential Quadratic Programming) optimisation approaches. Initially, a metallic flat-bar stiffened plate is exemplified from the superstructure of a marine vessel and, subsequently, its structural topology is varied as hat-section stiffened FRP(Fibre Reinforced Plastics) single skin plates and monocoque FRP sandwich plates having a PVC foam core. These proposed structural alternatives are analysed using elastic closed-form solutions and SQP optimisation method under stress and deflection limits obtained from practice to calculate and optimise geometry dimensions and weights. Results obtained from the comparative study provide useful information for marine designers especially at the preliminary design stage where various building materials and structural configurations are dealt with.

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

The Development of Inner Structure of Metallic Sandwich Plates for Bending (굽힘성형을 위한 금속 샌드위치판재의 내부구조재 개발)

  • Seong, D.Y.;Jung, C.G.;Yoon, S.J.;Shim, D.S.;Lee, S.H.;Ahn, D.G.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.126-131
    • /
    • 2006
  • Metallic sandwich plates are ultra-light materials not only with high strength and stiffness but also with other multifunctional physical properties. Inner dimpled shell structure can be fabricated by a piecewise sectional forming process, and then bonded with face sheets of the same material by resistance welding. Possible region for bending and limit radius of curvature are defined to compare the formability of sandwich plates. Tests have shown that sandwich plates with inner dimpled shell structure subject to bending have longer possible region for bending and smaller limit radius of curvature than other types of sandwich plates. The proposed inner dimpled shell structure is shown to have better formability of sandwich plates for bending than other types inner structures.

Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling (로봇 냉각을 위한 수냉식 냉각판의 성능 평가)

  • Lee, Suk-Won;Karng, Sarng-Woo;Hwang, Kyu-Dae;Kim, Seo-Young;Rhee, Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • The increase of system weight due to installation of cooling devices adds electrical and mechanical loads of humanoid robot, and in return, results in much heat. Therefore, the weight of cooling system is a critical issue for robot cooling. In this study, we propose non-metallic cold plates to deal with such problems. We compare thermal performances between one metallic cold plate and five different types of non-metallic cold plates. A metallic cold plate is totally made of copper. Five non-metallic PC(polycarbonate) cold plates, which are designed to reduce the overall weight of robot cooling system, are composed of a polycarbonate cover with different types of base plate. The overall heat transfer coefficients per unit mass and thermal resistances are obtained for the cold plates. The metallic cold plate shows the best thermal performance. It is interesting to note that the PC cold plate with an aluminum base plate with 18 channels shows the best overall heat transfer coefficient per unit mass. Most polycarbonate cold plates display fairly comparable thermal performance with more reduced system weight compared to the metallic cold plate.

Fabrication and forming of metallic sandwich plates with bi-directional corrugated inner structure (두 방향 주름구조를 내부구조로 하는 금속 샌드위치 판재의 제작 및 성형)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.281-284
    • /
    • 2006
  • Metallic sandwich plates with hi-directional inner structure are important new structures for forming applications. Bi-directional corrugated inner structures with less than 25% of relative density are fabricated by piecewise sectional forming process and then bonded with two face sheets by adhesive bonding. Drawing and U-bending experiments have performed and shown that the radius of curvature of sandwich plates is 75mm and sandwich plates are bended 90 degrees without collapse of inner structures. Bi-directional inner structures are suggested to improve formability of sandwich plates for bending and drawing.

  • PDF

The Development of Inner Structure of Metallic Sandwich Plates for Bending (굽힘 성형을 위한 금속 샌드위치 판재의 내부구조재 개발)

  • Seong D. Y.;Jung C. G.;Yoon S. J.;Shim D. S.;Lee S. H.;Ahn D. G.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.301-304
    • /
    • 2005
  • Metallic sandwich plates are ultra-light materials with not only high strength and stiffness but also multifunctional. Inner dimpled shell structure can be fabricated by piecewise sectional forming process, and then bonded with same material face sheets by resistance welding. Tests have shown that sandwich plates with dimpled shell structure subject to bending have more collapse load, energy absorption and deflection before collapse than other types of sandwich plates. Consequently, inner dimpled shell structure can improve formability of sandwich plates for bending.

  • PDF

Introduction of Efficient FE-analysis Method Using Virtual Equivalent Projected Model (VEPM) for Metallic Sandwich Plates with Pyramidal Truss Cores (가상등가투영형상을 이용하여 피라미드형 트러스 코어를 구비한 금속샌드위치 판재의 효율적 해석기법 제안)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.262-265
    • /
    • 2007
  • Metallic sandwich plates constructed of two face sheets and low relative density cores have lightweight characteristics and various static and dynamic load bearing functions. To predict the formability and performance of these structured materials, a computationally efficient FE-analysis method incorporating virtual equivalent projected model has been newly introduced for analysis of metallic sandwich plates. Two dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries including anisotropic stiffness, yield strength and linear hardening function. The projected shapes and virtual properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of 3D pyramidal truss core.

  • PDF

Multi-film coated bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (다층박막 코팅된 PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.646-648
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

  • PDF

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.