• Title/Summary/Keyword: Metallic migration

Search Result 23, Processing Time 0.015 seconds

Removal of Kirschner Wire Migrated into the Video Assisted Thoracic Cavity by Thoracoscopic Surgery (흉강내로 이동한 K-강선의 비디오흉강경을 이용한 제거 -1예 보고-)

  • Kim Yong-In L.;Choe Ju Won
    • Journal of Chest Surgery
    • /
    • v.39 no.3 s.260
    • /
    • pp.251-254
    • /
    • 2006
  • Metallic fixations devices are widely used in the surgical management of fractures and dislocations of shoulder. It is known that Kirschner wire (K-wire) may migrate into the thoracic cavity or other organs may occur. We report a case in which a K-wire previously placed in the clavicle migrated into the thoracic cavity without causing any trauma to the major vascular structures and was removed successfully by thoracoscopic surgery.

Right-to-Left Displacement of an Airgun Lead Bullet after Transorbital Entry into the Skull Complicated by Posttraumatic Epilepsy : A Case Report

  • Chao-bin Wang;Hui Wang;Jun-shuang Zhao;Ze-jun Wu;Hao-dong Liu;Chao-jia Wang;An-rong Li;Dawei Wang;Juntao Hu
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.598-604
    • /
    • 2023
  • Penetrating head injury is a serious open cranial injury. In civilians, it is often caused by non-missile, low velocity flying objects that penetrate the skull through a weak cranial structure, forming intracranial foreign bodies. The intracranial foreign body can be displaced due to its special quality, shape, and location. In this paper, we report a rare case of right-to-left displacement of an airgun lead bullet after transorbital entry into the skull complicated by posttraumatic epilepsy, as a reminder to colleagues that intracranial metal foreign bodies maybe displaced intraoperatively. In addition, we have found that the presence of intracranial metallic foreign bodies may be a factor for the posttraumatic epilepsy, and their timely removal appears to be beneficial for epilepsy control.

Predicting Migration of a Heavy Metal in a Sandy Soil Using Time Domain Reflectometry (TDR을 이용한 사질토양에서의 중금속 이동 추정)

  • Dong-Ju Kim;Doo-Sung Baek;Min-Soo Park
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Recently, transport parameters of conservative solutes such as KCl in a porous medium have been successfully determined using time domain reflectometry (TDR) . This study was initiated to Investigate the applicability of TDR technique to monitoring the fate of a heavy metal ion in a sandy soil and the distribution of its concentration along travel distance with time. A column test was conducted in a laboratory that consists of monitoring both resident and flux concentrations of $ZnCl_2$in a sandy soil under a breakthrough condition. A tracer of $ZnCl_2$(10 g/L) was injected onto the top surface of the sample as pulse type as soon as a steady-state condition was achieved. Time-series measurements of resistance and electrical conductivity were performed at 10 cm and 20 cm of distances from the inlet boundary by horizontal-positioning of parallel TDR metallic rods and using an EC-meter for the effluent exiting the bottom boundary respectively. In addition. Zn ions of the effluent were analyzed by ICP-AES. Since the mode and position of concentration detected by TDR and effluent were different, comparison between ICP analysis and TDR-detected concentration was made by predicting flux concentration using CDE model accommodating a decay constant with the transport parameters obtained from the resident concentrations. The experimental results showed that the resident concentration resulted in earlier and higher peak than the flux concentration obtained by EC-meter, implying the homogeneity of the packed sandy soil. A close agreement was found between the predicted from the transport parameters obtained by TDR and the measured $ZnCl_2$concentration. This indicates that TDR technique can also be applied to monitoring heavy metal concentrations in the soil once that a decay constant is obtained for a given soil.

  • PDF