• Title/Summary/Keyword: Metallic and ionic elements concentration

Search Result 6, Processing Time 0.018 seconds

Characteristics of Metallic and Ionic Elements Concentration in PM10 at Guducsan in Busan (부산 구덕산 미세먼지의 금속성분 및 이온성분 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.715-726
    • /
    • 2016
  • This study investigates the characteristics of metallic and ionic elements concentration, concentration according to transport path, and factor analysis in $PM_{10}$ at Guducsan in Busan in the springtime of 2015. $PM_{10}$ concentration in Guducsan and Gwaebeopdong were $59.5{\pm}9.04{\mu}g/m^3$ and $87.5{\pm}20.2{\mu}g/m^3$, respectively. Contribution rate of water-soluble ions and secondary ion in $PM_{10}$ concentration in Guducsan were 37.0% and 27.8% respectively. [$NO_3{^-}/SO{_4}^{2-}$] ratio and contribution rate of sea salt of $PM_{10}$ in Guducsan and Gwaebeopdong were 0.91 and 1.12, 7.0% and 5.3%, respectively. The results of the backward trajectory analysis indicates that $PM_{10}$ concentration, total inorganic water-soluble ions and total secondary ions were high when the air parcels moved from Sandong region in China than non-Sandong and northen China to Busan area. The results of the factor analysis at Guducsan indicates that factor 1 was anthropogenic source effects such as automobile emissions and industrial combustion processes, factor 2 was marine sources such as sea salts from sea, and factor 3 was soil component sources.

Characteristics of Metallic and Ionic Concentration in Fine Particle during Haze Days in Busan (부산 지역 연무 발생일의 미세먼지 중 금속과 이온 성분 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.767-778
    • /
    • 2017
  • This research investigates the characteristics of metallic and ionic elements in $PM_{10}$ and $PM_{2.5}$ on haze day and non-haze day in Busan. $PM_{10}$ concentration on haze day and non-haze day were 85.75 and $33.52{\mu}g/m^3$, respectively, and $PM_{2.5}$ on haze day and non-haze day were 68.24 and $23.86{\mu}g/m^3$, respectively. Contribution rate of total inorganic water-soluble ion to $PM_{10}$ mass on haze day and non haze day were 58.2% and 61.5%, respectively, and contribution rate of total water-soluble ion to $PM_{2.5}$ mass on haze day and non haze day were 58.7% and 64.7%, respectively. Also, contribution rate of secondary ion to $PM_{10}$ mass on haze day and non haze day were 52.1% and 47.5%, respectively, and contribution rate of secondary ion to $PM_{2.5}$ mass on haze day and non haze day were 54.4% and 53.6%, respectively. AC (anion equivalents)/CE (cation equivalents) ratio of $PM_{10}$ mass on haze day and non haze day were 1.09 and 1.0, respectively, and AC/CE ratios of $PM_{2.5}$ mass on haze day and non haze day were 1.12 and 1.04, respectively. Also, SOR (Sulfur Oxidation Ratio) of $PM_{10}$ mass on haze day and non haze day were 0.32 and 0.17, respectively, and SOR of $PM_{2.5}$ on haze day and non haze day were 0.30 and 0.15, respectively. Lastly, NOR (Nitrogen Oxidation Ratio) of $PM_{10}$ on haze day and non haze day were 0.17 and 0.08, respectively, and NOR of $PM_{2.5}$ on haze day and non haze day were 0.13 and 0.06, respectively.

Characteristics of Metallic and Ionic Concentrations in PM10 and PM2.5 in Busan (부산지역 PM10과 PM2.5 중의 금속 농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.819-827
    • /
    • 2014
  • This study analyzes the chemical composition of metallic elements and water-soluble ions in $PM_{10}$ and $PM_{2.5}$. $PM_{10}$ and $PM_{2.5}$ concentrations in Busan during 2010-2012 were $97.2{\pm}67.5$ and $67.5{\pm}32.8{\mu}g/m^3$, respectively, and the mean $PM_{2.5}/PM_{10}$ concentration ratio was 0.73. The contribution rate of water-soluble ions to $PM_{10}$ ranged from 29.0% to 58.6%(a mean of 38.6%) and that to $PM_{2.5}$ ranged from 33.9% to 58.4%(a mean of 43.1%). The contribution rate of sea salt to $PM_{10}$ was 13.9% for 2011 and 9.7% for 2012, while that to $PM_{2.5}$ was 17.4% for 2011 and 10.1% for 2012. $PM_{10}$ concentration during Asian dust events was $334.3{\mu}g/m^3$ and $113.3{\mu}g/m^3$ during non-Asian dust events, and the $PM_{10}$ concentration ratio of Asian Dust/Non Asian dust was 2.95. On the other hand, the $PM_{2.5}$ concentration in Asian dust was $157.4{\mu}g/m^3$ and $83.2{\mu}g/m^3$ in Non Asian dust, and the $PM_{2.5}$ concentration ratio of Asian Dust/Non Asian dust was 1.89, which was lower than that of $PM_{10}$.

Characteristics of Metallic and Ionic Concentration in $PM_{10}$ at Inland and Seashore in Busan (부산지역 내륙과 해안의 $PM_{10}$ 중의 금속농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik;Oh, Kwang-Joong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2010
  • $PM_{10}$ mass were measured in Gwaebeopdong (inland) and Dongsamdong (seashore) of Busan in summer and fall, 2007 and the 24-hour averaged samples were analyzed to investigate temporal and spatial variability of metallic elements and water-soluble ions in $PM_{10}$. Overall average concentrations of $PM_{10}$ mass during the study period were 72.7 ${\mu}g/M^3$ and 64.3 ${\mu}g/M^3$ in Gwaebeopdong and Dongsamdong, respectively. As for metal elements, averaged concentrations of crustal components, Ca, Fe, K, Mn, and Ti, in Gwaebeopdong exhibited enhancement relative to Dongsamdong. Non-crustal elements, Pb and Cu, displayed elevated levels in Gwaebeopdong while Ni and Zn were observed to be high in Dongsamdong. Averaged nitrate concentration in Gwaebeopdong (6.36 ${\mu}g/M^3$) was greater than in Dongsamdong(5.68 ${\mu}g/M^3$) and both areas had higher level of nitrate in summer than in fall. Averaged sulfate concentrations in Dongsamdong (25.4%) exhibited elevated level relative to Gwaebeopdong (19.4%). Overall average contribution of water-soluble ions to $PM_{10}$ in Dongsamdong (47.5%) was higher than in Gwaebeopdong (37.8%). The average mass fractions of secondary ions in $PM_{10}$ were elevated in Dongsamdong (37.1%) as compared to Gwaebeopdong (31.4%). Equivalent ratio of [${SO_4}^{2-}/NO_3{^-}$] was seen to be lower in Gwaebeopdong (1.39) than that in Dongsamdong (1.79) and consistently higher in summer than in fall for both areas.

Radon and TSP Concentrations in the Ambient Air of Gosan Area, Jeiu Island between 2001 and 2004 (제주도 고산지역의 라돈 및 TSP 에어로졸 농도 특성: 2001~2004년 측정)

  • Kang, Chang-Hee;Ko, Hee-Jung;Zahorowski, Wlodek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.612-624
    • /
    • 2007
  • The real-time monitoring of radon ($^{222}Rn$) concentrations has been carried out to evaluate its ambient background concentration levels in Gosan site, Jeju Island between January 2001 and December 2004. In addition, the atmospheric TSP aerosols have been sampled, and their ionic and metallic components were analyzed to understand the characteristics of air pollution. The mean concentration of radon was $3,121{\pm}1,627\;mBq/m^3$, and the seasonal mean concentrations for spring, summer, fall and winter seasons were 2,898, 2,398, 3,571 and $3,646\;mBq/m^3$, respectively, The hourly concentrations have shown the highest value at 7 a.m. and the lowest value at 2 p.m. From the backward trajectory analyses, the radon concentrations have increased, when the air parcels were moved from the Chinese continent to Jeju area. On the other hand, they have decreased, when the air parcels from the North Pacific Ocean. In the analytical results of ionic species and metal elements of TSP aerosols, the concentrations of $nss-{SO_4}^{2-}$ and S were higher in June and March. Meanwhile, the concentrations of other anthropogenic species as well as soil components were mostly higher in March and April. On the basis of factor analysis, the TSP aerosols at Gosan area were largely influenced by soil sources, followed by anthropogenic sources and marine sources. From the result of backward trajectory analyses, the concentrations of $nss-{SO_4}^{2-},\;{NO_3}^-$, Al and Ca were mostly higher, when the air parcels moved from Chinese continent to Jeju area. On the other hand, their concentrations were lower, when the air parcels drifted from the North Pacific Ocean.

Study on Investigation and Characteristics of Metallic Elements in Industrial Complex (공업도시의 금속원소 조사와 특성 연구)

  • Kim, Seong-Cheon
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.209-217
    • /
    • 2011
  • Objectives: In this study, the size distribution of airborne particulates ($PM_{10}$) was measured by using Cascade Impactors. The purpose of this study was to assess the size distribution of metal and ionic materials of $PM_{10}$. Methods: Samples were collected in the Kunsan industrial complex from April 2006 to January 2007. Results: The mass fraction of $PM_{10}$ had a bimodal distribution between 2.1-3.1 ${\mu}M$, and the average mass fraction of particles less than 2.1-3.1 ${\mu}M$ was 47%. Average concentrations of PM10 were 68.05 ${\mu}g/m^3$ and seasonal concentration 95.44 ${\mu}g/m^3$ for spring, 49.03 ${\mu}g/m^3$ for summer, 81.99 ${\mu}g/m^3$ for fall, 52.66 ${\mu}g/m^3$ for winter, respectively. Conclusions: Seasonal variations of $PM_{10}$ were significant for showing peak values in spring. The average concentrations of Cd, Cr, Pb, and Fe were 1.54, 4.51, 14.11, and 254.3 $ng/m^3$, respectively. The ratios of fine particles to total mass were 0.47 for $PM_{10}$, 0.45 for Cr, and 0.16 for Fe, 0.91 for Cd and 0.49 for Pb, respectively.